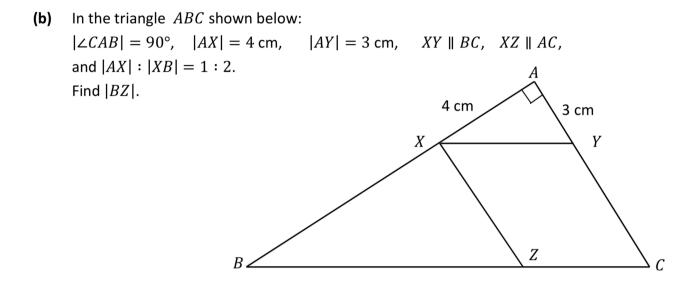
Question 6

(a) Let $\triangle ABC$ be a triangle. Prove that if a line l is parallel to BC and cuts [AB] in the ratio s : t, where $s, t \in \mathbb{N}$, then it also cuts [AC] in the same ratio.



Q6	Model Solution – 25 Marks	Marking Notes
(a)	Diagram:	
-		Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: Relevant diagram drawn Mid Partial Credit: Construction clearly indicated High Partial Credit: Proof missing 1 relevant step
	Divide [AB] into s +t equal parts, s of them	
	lying along [<i>AX</i>] and <i>t</i> of them lying along	
	[<i>XB</i>].	
	Through each point of division draw a line parallel to [<i>BC</i>]	
	Proof:	
	By a previous theorem the parallel lines cut	
	off segments of equal length along [AC].	
	Therefore [<i>AC</i>] is divided into <i>s</i> + <i>t</i> equal	
	parts with <i>s</i> of them forming [AY] and <i>t</i> of	
	them forming [YC].	
	Let <i>k</i> be the length of one segment on [<i>AC</i>].	
	[AY]: [YC] = ks: kt = s: t	

(b)		
	$ XY = \sqrt{4^2 + 3^2} = 5$	Scale 10C (0, 3, 7, 10)
	ZC = 5	<i>Low Partial Credit:</i> <i>XY</i> or <i>BX</i> or <i>CY</i> found
	BZ = 10cm	Pythagoras with some substitution
	Or	High Partial Credit:
	$\frac{8}{4} \text{ or } \frac{2}{1} = \frac{ BZ }{5} \to BZ = 10 \text{ cm}$	ZC or $ BC $ found Ratios formulated with $ BZ $ the sole unknown
	Or	
	$\frac{4}{12} = \frac{5}{5 + BZ }$	
	$4 BZ + 20 = 60 \rightarrow BZ = 10 \text{ cm}$	
	Similarly: $\frac{3}{9} = \frac{5}{5+ BZ }$	