Question 7

A section of a garden railing is shown below. This section consists of nine cylindrical bars, labelled A to I , with a solid sphere attached to the centre of the top of each bar.
The volume of each sphere from B to E is 1.75 times the volume of the previous sphere.

(a) The radius of sphere A is 3 cm . Find the sum of the volumes of the five spheres A, B, C, D, and E. Give your answer correct to the nearest cm^{3}.
(b) (i) The surface area of sphere E can be taken to be $503 \mathrm{~cm}^{2}$. The height of the railing at E (i.e. the sum of the heights of bar E and sphere E) is 1.2 metres.
Find the height of bar E , in cm , correct to 1 decimal place.

(c) There is a wall on each side of the section of railing, as shown in the diagram below which is not to drawn to scale. The distance from wall to wall is 1.5 m . The distance from the wall to bar A is 20 cm and similarly from the other wall to bar I is 20 cm .
The radius of each bar is 1 cm . The gap between each bar is identical.
Find the size of this gap.

(d) The sphere on bar A and the sphere on bar B are to be joined by a straight rod as shown in the diagram which is not to drawn to scale. Find the length of the shortest rod that will join sphere A to sphere B.
Give your answer in cm, correct to 1 decimal place.

Q7	Model Solution - 50 Marks	Marking Notes
(a)	$\begin{gathered} V=\frac{4}{3} \pi 3^{3}=36 \pi=113 \cdot 1 \\ \frac{113 \cdot 1\left(1-1 \cdot 75^{5}\right)}{1-1 \cdot 75}=2324 \cdot 29 \\ =2324 \end{gathered}$ or Volume A = $113 \cdot 1$ Volume B=197.925 Volume C $=346 \cdot 36875$ Volume D = 606•1453125 Volume E = 1060.754296875 Total: 2324-293359375=2324	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Volume formula with some substitution Mid Partial Credit: Volume of 2 spheres GP formula with some substitution High Partial Credit: Volume of 5 spheres G P formula fully substituted
(b) (i)	$\begin{gathered} 4 \pi r^{2}=503 \Rightarrow r=\sqrt{\frac{503}{4 \pi}}=6.33 \\ \text { Height }=120-2(6.33)=107.3 \\ \text { Or } \\ \frac{4}{3} \pi r^{3}=1060.754 \text { from(a) } \\ r=6.326 \end{gathered}$ Height : $120-2(6 \cdot 326)=107 \cdot 348=107 \cdot 3$	Scale 10C (0, 3, 7, 10) Low Partial Credit: $\begin{aligned} & 4 \pi r^{2}=503 \\ & \frac{4}{3} \pi r^{3}=\text { volume from }(\mathrm{a}) \end{aligned}$ High Partial Credit: r found
(b) (ii)	A: $\pi 1^{2} h=71 \cdot 3 \pi \Rightarrow h=71 \cdot 3$ Height difference: $107 \cdot 3-71 \cdot 3=36$ $\frac{36}{4}=9$ step up in each bar. Or $T_{5}=71 \cdot 3+4 d=107 \cdot 3 \rightarrow d=9$ Height of each bar (in cm) $71 \cdot 3,80 \cdot 3,89 \cdot 3,98 \cdot 3,107 \cdot 3$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Vol formula with some substitution $\pi r^{2} h=71 \cdot 3 \pi$ Mid Partial Credit: Height of bar A High Partial Credit: Difference in height between bar A and bar E

(c)	$\begin{gathered} 150-(20+20+9(2))=92 \\ \frac{92}{8} \mathrm{~cm} \text { or } 11 \cdot 5 \mathrm{~cm} \end{gathered}$	Scale 15C (0, 4, 11, 15) Low Partial Credit: Recognises 8 equal divisions Indicates subtraction of one relevant length 9×2 High Partial Credit: 150-40-18 or equivalent					
(d)	$\begin{aligned} & V_{B}=1.75\left(\frac{4}{3} \pi 3^{3}\right)=63 \pi \\ & V_{B}=\frac{4}{3} \pi r^{3}=63 \pi=>r_{b}=3.62 \mathrm{~cm} \end{aligned}$ $\begin{aligned} & \quad\|X Y\|=1+11 \cdot 5+1=13 \cdot 5 \\ & \|Z W\|=(9-3)+3 \cdot 62=9 \cdot 62 \\ & \|T W\|=\sqrt{13 \cdot 5^{2}+9 \cdot 62^{2}}=16 \cdot 576 \end{aligned}$ Or $\begin{aligned} & \tan \angle W T Z=\frac{9 \cdot 62}{13 \cdot 5} \rightarrow\|\angle W T Z\|=35.459^{\circ} \\ & \cos \angle W T Z=\frac{13 \cdot 5}{\|T W\|} \rightarrow\|T W\|=16.576 \end{aligned}$ The rod is: $\|T W\|-3-3.62$ $\begin{aligned} = & 16 \cdot 576-3-3.62=9.95 \\ & \|T W\|=10 \end{aligned}$	```Scale 5B (0, 2, 5) Partial Credit: \(V_{B}\) formulated with some substitution \(\|X Y	\) formulated \(T W	\) evaluated \(\operatorname{rod}=	T W	-r_{b}-r_{a}\) formulated with 2 relevant values```

