Question 9 (40 marks)

In engineering, a crank-and-slider mechanism can be used to change circular motion into motion back and forth in a straight line.

In the diagrams below, the crank [OD] rotates about the fixed point O. The point C slides back and forth in a horizontal line. [CD] is the rod that connects C to the crank. The diagrams below show three of the possible positions for C and D. |OD| = 10 cm and |DC| = 30 cm.

(a) The diagram shows a particular position of the mechanism with $|\angle DCO| = 15^{\circ}$. Find $|\angle COD|$, correct to the nearest degree.

- (b) As D moves in a circle around O, the angle α in the diagram below increases. The distance |CX| can be considered to be a function of α and written as $f(\alpha)$.
 - (i) Write down the period and range of f.
 - (ii) Complete the table below for $f(\alpha)$. Give your answers correct to 2 decimal places where appropriate.

(**Note: Diagram 1** at the start of this question represents $\alpha = 0^{\circ}$).

α	0°	90°	180°	270°	360°
$f(\alpha)$ (cm)	30				

- (iii) Use your values from the table to draw a rough sketch of f in the domain $0^{\circ} \le \alpha \le 360^{\circ}$.
- (iv) Referring to Diagrams 1, 2, and 3 near the start of this question, for which of the three positions of the mechanism will a 1 degree change in α cause the greatest change in the position of C? Explain your answer.
- (c) The diagramshows another crank-and-slider mechanism with different dimensions. In the diagram, |AB| = 36 cm, |AX| = 31 cm, and $|\angle BAO| = 10^{\circ}$.

(Note: $|\angle OBA| = 90^\circ$)

Find r, the length of the crank. Give your answer in cm, correct to the nearest cm.

Q9	Model Solutio	Marking	Marking Notes					
(a)		$\frac{10}{\sin 15} = \frac{30}{\sin x}$ $\sin x = \frac{30 \sin x}{10}$ $\sin x = 0.776$ $x = 51^{\circ}$	Low Parti Sine rule	Scale 10C (0, 3, 7, 10) Low Partial Credit: Sine rule formulated with some substitution High Partial Credit:				
(b) (i)	period = 2π Range = [10, 30]			Low Parti Period or High Part Period co	Scale 5C (0, 2, 4, 5) Low Partial Credit: Period or range correct High Partial Credit: Period correct and range partly correct Period and range in incorrect order			
(b) (ii)	α	0°	90°	180°	270°	360°		
	$f(\alpha)$ (cm)	30	18·28	10	18·28	30		
	Scale 5C (0, 2, 4, 5) Low Partial Credit: 1 correct new value High Partial Credit: 2 correct new values							

$$r^{2} = 36^{2} + (31 + r)^{2}$$

$$-2(36)(31 + r)\cos 10^{\circ}$$

$$r^{2} = 1296 + 961 + 62r + r^{2}$$

$$-(2232\cos 10^{\circ} - 72r\cos 10^{\circ})$$

$$8.906r = 58.91$$

$$r = 6.62$$

$$r = 7$$

Or

$$|BX|^2 = 36^2 + 31^2 - 2 \times 36 \times 31\cos 10^\circ$$

 $|BX|^2 = 58.91$
 $|BX| = 7.675$
 $\frac{\sin 10^\circ}{7.675} = \frac{\sin \angle BXA}{36}$
 $\angle BXA = 125.462^\circ \Rightarrow \angle BXO = 54.53795^\circ$
 ΔBXO is isosceles $\Rightarrow \angle BOX = 70.924^\circ$

 $\frac{\sin 70.924^{\circ}}{7.675} = \frac{\sin 54.53795^{\circ}}{r}$

$$r = 6.6145$$

 $r = 7$

Scale 5C (0, 2, 4, 5)

Low Partial Credit:

Cosine rule formulated with some substitution (31+r)

High Partial Credit: Relevant equation in $\ r$