In engineering, a crank-and-slider mechanism can be used to change circular motion into motion back and forth in a straight line.

In the diagrams below, the crank $[O D]$ rotates about the fixed point O. The point C slides back and forth in a horizontal line. [CD] is the rod that connects C to the crank. The diagrams below show three of the possible positions for C and $D .|O D|=10 \mathrm{~cm}$ and $|D C|=30 \mathrm{~cm}$.

Diagram 1

Diagram 2
Diagram 3
(Starting position)

(a) The diagram shows a particular position of the mechanism with $|\angle D C O|=15^{\circ}$. Find $|\angle C O D|$, correct to the nearest degree.

(b) As D moves in a circle around O, the angle α in the diagram below increases. The distance $|C X|$ can be considered to be a function of α and written as $f(\alpha)$.
(i) Write down the period and range of f.
(ii) Complete the table below for $f(\alpha)$.

Give your answers correct to 2 decimal places where appropriate.
(Note: Diagram 1 at the start of this question represents $\alpha=0^{\circ}$).

α	0°	90°	180°	270°	360°
$f(\alpha)$ (cm)	30				

(iii) Use your values from the table to draw a rough sketch of f in the domain $0^{\circ} \leq \alpha \leq 360^{\circ}$.
(iv) Referring to Diagrams 1, 2, and $\mathbf{3}$ near the start of this question, for which of the three positions of the mechanism will a 1 degree change in α cause the greatest change in the position of C ? Explain your answer.
(c) The diagramshows another crank-andslider mechanism with different dimensions. In the diagram, $|A B|=36 \mathrm{~cm}$, $|A X|=31 \mathrm{~cm}$, and $|\angle B A O|=10^{\circ}$.
(Note: $|\angle O B A|=90^{\circ}$)
Find r, the length of the crank. Give your answer in cm , correct to the nearest cm .

Q9	Marking Notes	
(b) (iii)		Scale $10 \mathrm{C}(0,3,7,10)$ Low Partial Credit: 1 point from table plotted High Partial Credit: 3 points from table plotted
(b) (iv)	Answer: diagram 2 refer to the steepness of their graph at the three corresponding points or rely on the original geometry of the situation: the closer $\angle C D O$ is to a right angle the more the connecting rod will get pulled or pushed by a small change in the crank angle	Scale 5B (0, 2, 5) Partial Credit: Diagram 2 identified but without reason or with invalid reason

(c)	$\begin{gathered} r^{2}=36^{2}+(31+r)^{2} \\ -2(36)(31+r) \cos 10^{\circ} \\ r^{2}=1296+961+62 r+r^{2} \\ -\left(2232 \cos 10^{\circ}-72 r \cos 10^{\circ}\right) \\ 8.906 r=58.91 \\ r=6.62 \\ r=7 \end{gathered}$ Or $\begin{gathered} \|B X\|^{2}=36^{2}+31^{2}-2 \times 36 \times 31 \cos 10^{\circ} \\ \|B X\|^{2}=58.91 \\ \|B X\|=7.675 \\ \frac{\sin 10^{\circ}}{7.675}=\frac{\sin \angle B X A}{36} \\ \angle B X A=125.462^{\circ} \Rightarrow \angle B X O=54.53795^{\circ} \\ \triangle B X O \text { is isosceles } \Rightarrow \angle B O X=70.924^{\circ} \end{gathered}$ $\begin{aligned} & \frac{\sin 70.924^{\circ}}{7.675}=\frac{\sin 54.53795^{\circ}}{r} \\ & r=6.6145 \\ & r=7 \end{aligned}$	Scale 5C (0, 2, 4, 5) Low Partial Credit: Cosine rule formulated with some substitution $(31+r)$ High Partial Credit: Relevant equation in r

