Question 1

(a) In the expansion of $(2x + 1)(x^2 + px + 4)$, where $p \in \mathbb{N}$, the coefficient of x is twice the coefficient of x^2 . Find the value of p.

(b) Solve the equation
$$\frac{3}{2x+1} + \frac{2}{5} = \frac{2}{3x-1}$$
 where $x \neq -\frac{1}{2}, \frac{1}{3}$, and $x \in \mathbb{R}$.

Q1	Model Solution – 25 Marks	Marking Notes
(a)	$(2x + 1)(x^{2} + px + 4)$ $2x^{3} + 2px^{2} + 8x + x^{2} + px + 4$ $8 + p = 2(2p + 1)$ $8 + p = 4p + 2$ $3p = 6$ $p = 2$ Or Coefficient of x is 8 + p Coefficient of x^{2} is 2p + 1 $8 + p = 2(2p + 1)$ $8 + p = 4p + 2$ $3p = 6$ $p = 2$	 Scale10D (0, 4, 5, 8, 10) Low Partial Credit: Any relevant multiplication Mid Partial credit: Multiplication completed without error(s) Multiplication completed with errors and correctly identifies (in terms of p) the coefficient of either x² or x Correctly identifies the coefficient of either x or x² High Partial credit: Multiplication completed with errors Relevant coefficients equated (equation in p) Multiplication completed and coefficients of x² and x identified but solves incorrect equation in p

$12x^{2} + 27x - 27 = 0$ $4x^{2} + 9x - 9 = 0$ (x + 3)(4x - 3) = 0 $x = -3 \text{ or } x = \frac{3}{4}$	(b) $\frac{3}{2x+1} + \frac{2}{5} = \frac{2}{3x-1}$ CD: $5(2x+1)(3x-1)$ $15(3x-1) + (4x+2)(3x-1)$ $= 10(2x+1)$ $12x^2 + 27x - 27 = 0$ $4x^2 + 9x - 9 = 0$ $(x+3)(4x-3)=0$ $x = -3 \text{ or } x = \frac{3}{4}$ Or $\frac{3}{2x+1} + \frac{2}{5} = \frac{2}{3x-1}$ $\frac{15+2(2x+1)}{5(2x+1)} = \frac{2}{3x-1}$ $\frac{4x+17}{10x+5} = \frac{2}{3x-1}$ $(4x+17)(3x-1) = 2(10x+5)$ $12x^2 + 47x - 17 = 20x + 10$ $12x^2 + 27x - 27 = 0$ $4x^2 + 9x - 9 = 0$ $(x+3)(4x-3)=0$ $x = -3 \text{ or } x = \frac{3}{4}$	Scale 15D (0, 4, 7, 11,15) Low Partial Credit: - CD or partial CD identified - Cross multiply on LHS - Multiplies one term correctly by one of the denominators - $x = -3$ or $x = \frac{3}{4}$ substituted and justified as a solution Mid Partial Credit: - Equation without fractions High Partial Credit: - Relevant quadratic in the form: $ax^2 + bx + c = 0$ Note: No quadratic \Rightarrow low partial credit at most, except in the case where the candidate has reached the mid partial stage
--	---	---