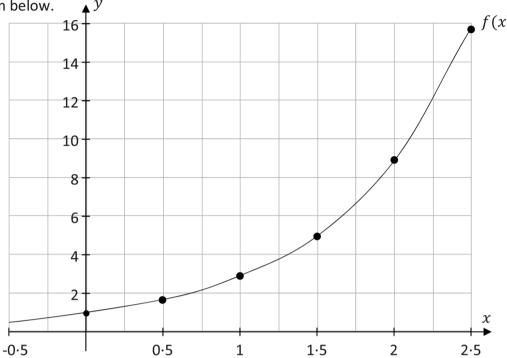
Question 2 (25 marks)

The graph of the function $f(x) = 3^x$, where $x \in \mathbb{R}$, cuts the y-axis at (0,1) as shown in the diagram below. $\mathbf{A}^{\mathcal{Y}}$



- (a) (i) Draw the graph of the function g(x) = 4x + 1 on the diagram.
 - (ii) Use substitution to verify that f(x) < g(x), for x = 1.9.
- **(b)** Prove, using induction, that $f(n) \ge g(n)$, where $n \ge 2$ and $n \in \mathbb{N}$.

Q2	Model Solution – 25 Marks	Marking Notes
(a) (i)	(0, 1) (2, 9) 16 14 19 19 19 19 19 19 19 19 19 19 19 19 19	Scale 5C (0, 2, 3, 5) Low Partial Credit: - 1 point on line found High Partial Credit: - 2 points on line found - 1 point found and plotted (apart from (0, 1) and (2, 9)) Full Credit -1: - Freehand graph drawn
(a) (ii)	$g(1.9) = 4(1.9) + 1 = 8.6$ $f(1.9) = 3^{1.9} = 8.06$ $f(x) < g(x)$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - $g(1.9)$ written or found - $f(1.9)$ written or found High Partial Credit: - $g(1.9)$ and $f(1.9)$ found

(b)

To Prove: $3^n \ge 4n + 1$ for $n \ge 2$

 $P(2): 3^2 \ge 4(2) + 1$

 $9 \ge 9$, True

Assume P(n) is true for n = k,

Now prove P(n) is true for n = k + 1

 $P(k): 3^k \ge 4k + 1 \text{ for } k \ge 2$

$$P(k+1)$$
: $3^{k+1} \ge 4(k+1) + 1$

$$3^{k+1} \ge 4k + 5$$

Proof: $P(k) \times 3$: $3^{k+1} \ge 3(4k+1)$

= 12k + 3

 $\Rightarrow 3^{k+1} \ge 4k + 5$

since 4k + 5 < 12k + 3 for $k \ge 2$

True for

n = k + 1 provided true for n = k

but true for n = 2

 \therefore True for all $n \ge 2$, $n \in \mathbb{N}$.

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

- Step P(2)
- P(k) or P(k+1) with incorrect inequality sign

Mid Partial Credit:

- Any two of P(2), P(k) or P(k+1)

High Partial Credit:

- Uses Step P(k) to prove Step P(k+1)

Full Credit -1:

- Omits conclusion but otherwise correct

Note: Accept Step P(2), Step P(k),

Step P(k + 1) in any order

Note: Accept $f(k) \ge g(k)$, $k \ge 2$ for

Step P(k)