## Question 3

(a) Factorise fully: $3 x y-9 x+4 y-12$.
(b) $g(x)=3 x \ln x-9 x+4 \ln x-12$. Using your answer to part (a) or otherwise, solve $g(x)=0$.
(c) Evaluate $g^{\prime}(e)$ correct to 2 decimal places.

| Q3 | Model Solution - 25 Marks | Marking Notes |
| :---: | :---: | :---: |
| (a) | $(3 x+4)(y-3)$ | Scale 5B (0, 2, 5) <br> Mid Partial Credit: <br> - Any relevant factorisation |
| (b) | $\begin{aligned} & 3 x \ln x-9 x+4 \ln x-12= \\ & 3 x(\ln x-3)+4(\ln x-3)= \\ & \quad(3 x+4)(\ln x-3) \\ & 3 x+4=0 \Rightarrow x=-\frac{4}{3} \\ & \ln x-3=0 \\ & \ln x=3 \\ & x=e^{3} \end{aligned}$ | Scale 10D (0, 4, 5, 8, 10) <br> Low Partial Credit: <br> - Any relevant factorisation of $g(x)$ <br> - Trial and improvement with at least two values tested <br> - Substitutes $20 \leq x \leq 20 \cdot 1$ <br> - $\quad y=\ln x$ <br> Mid Partial Credit <br> - Expression fully factorised <br> High Partial Credit: <br> $-\ln x=3$ <br> Full Credit: <br> - Both solutions presented <br> Note: Accept $x=20 \cdot 1$ for $x=e^{3}$ in the last line of the solution <br> Note: If no reference is made to $3 x+4$ in the solution, then award high partial credit at most |


| (c) | $g^{\prime}(x)=3 x\left(\frac{1}{x}\right)+(3) \ln x-9+4\left(\frac{1}{x}\right)$ | Scale 10D (0, 4, 5, 8, 10) <br> Low Partial Credit: <br> $-\quad$ Any relevant differentiation <br> $-\quad g(e)$ evaluated correctly to at least <br> 2 decimal places |
| :--- | :--- | :--- |
| $g^{\prime}(e)=3(e)\left(\frac{1}{e}\right)+(3) \ln (e)-9+4\left(\frac{1}{e}\right)$ | Mid Partial Credit <br> $-\quad$ Expression fully differentiated <br> $-\quad$ Product rule not applied but finishes <br> correctly |  |
| High Partial Credit: |  |  |
| $-\quad$ Derivative fully substituted |  |  |

