Question 5

(a) $3+2 i$ is a root of $z^{2}+p z+q=0$, where $p, q \in \mathbb{R}$, and $i^{2}=-1$. Find the value of p and the value of q.
(b) (i) $v=2-2 \sqrt{3} i$. Write v in the form $r(\cos \theta+i \sin \theta)$, where $r \in \mathbb{R}$ and $0 \leq \theta \leq 2 \pi$.
(ii) Use your answer to part (b)(i) to find the two possible values of w, where $w^{2}=v$. Give your answers in the form $a+i b$, where $a, b \in \mathbb{R}$.

Q5	Model Solution - 25 Marks	Marking Notes
(a)	$3-2 i=$ other root $\begin{aligned} & -p=(3+2 i)+(3-2 i)=6 \\ & p=-6 \\ & q=(3+2 i)(3-2 i)=13 \end{aligned}$ Or $\begin{aligned} & (3+2 i)^{2}+p(3+2 i)+q=0 \\ & 5+12 i+3 p+2 p i+q=0 \\ & 2 p=-12 \Rightarrow p=-6 \\ & 5+3 p+q=0 \Rightarrow q=13 \end{aligned}$ Or $\begin{gathered} \frac{-p \pm \sqrt{p^{2}-4 q}}{2}=3 \pm 2 i \\ -p \pm \sqrt{p^{2}-4 q}=6 \pm 4 i \\ -p=6 \\ \therefore p=-6 \\ \\ \sqrt{4 q-p^{2}}=4 \\ 4 q-p^{2}=16 \\ 4 q-(-6)^{2}=16 \\ 4 q=52 \\ \therefore q=13 \end{gathered}$	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Second root identified High Partial Credit: - Sum and product of roots formulated into equations for p and q - $\quad p$ or q found correctly Low Partial Credit: - Root substituted into equation - Any correct substitution High Partial Credit: - Real and imaginary terms formulated into equations for p and for q Low Partial Credit: - Some substitution into quadratic formula High Partial Credit: - Finds p - Full substitution into quadratic formula and equated to either root.

(b) (i)	$\begin{aligned} & \|v\|=\sqrt{4+12}=4 \\ & \theta=300^{\circ} \\ & v=4\left(\cos 300^{\circ}+i \sin 300^{\circ}\right) \end{aligned}$ Or $\begin{aligned} & \|v\|=\sqrt{4+12}=4 \\ & \theta=\frac{5 \pi}{3} \\ & v=4\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right) \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Correct plot on the Argand diagram - Some use of Pythagoras to find modulus - Some use of trigonometry to find argument High Partial Credit: Modulus or argument found Note: Accept $4\left(\cos -\frac{\pi}{3}+i \sin -\frac{\pi}{3}\right)$ and $4\left(\cos -60^{\circ}+i \sin -60^{\circ}\right)$
(b) (ii)	$\begin{gathered} w= \pm v^{\frac{1}{2}} \\ w= \pm 2(\cos 300+i \sin 300)^{\frac{1}{2}} \\ w= \pm 2(\cos 150+i \sin 150) \\ w= \pm(-\sqrt{3}+i) \\ w=-\sqrt{3}+i \text { or } \sqrt{3}-i \\ \text { Or } \\ \begin{array}{c} w=[4(\cos (300+360 n) \\ +i \sin (300+360 n)]^{\left(\frac{1}{2}\right)} \end{array} \\ \begin{array}{c} w=4^{\frac{1}{2}}[\cos (150+180 n)+i \sin (150 \\ +180 n)] \end{array} \\ \begin{array}{c} n=0 \\ w=2\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)=-\sqrt{3}+i \\ \underline{n}=1 \\ w=2\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right)=\sqrt{3}-i \end{array} \end{gathered}$	Scale $10 \mathrm{C}(0,4,7,10)$ Low Partial Credit: - $\quad w$ written in polar form with index - Some use of De Moivre's Theorem - $w=v^{\frac{1}{2}}$ High Partial Credit: - De Moivre's theorem applied to w - One solution found - Solutions in polar form Note: Accept candidates answer from (b)(i)

