(a) (i) Given that $x-\sqrt{32}=\sqrt{128}-5 x$, find the value of x, where $x \in \mathbb{R}$. Give your answer in the form $a \sqrt{2}$, where $a \in \mathbb{N}$.
(ii) $\mathrm{A}=\left\{\sqrt{32 k^{2}}, \sqrt{50 k^{2}}, \sqrt{128 k^{2}}, \sqrt{98 k^{2}}\right\}$, where $k \in \mathbb{N}$.

Show that the mean of set A is equal to the median of set A.
(b) Prove, using contradiction, that $\sqrt{2}$ is not a rational number.

Q6	Model Solution - 25 Marks	Marking Notes
(a) (i)	$\begin{aligned} & x+5 x=\sqrt{128}+\sqrt{32} \\ & 6 x=8 \sqrt{2}+4 \sqrt{2} \\ & 6 x=12 \sqrt{2} \\ & x=2 \sqrt{2} \end{aligned}$ Or $\begin{aligned} & x-\sqrt{32}=\sqrt{128}-5 x \\ & (x-\sqrt{32})^{2}=(\sqrt{128}-5 x)^{2} \\ & (x-4 \sqrt{2})^{2}=(8 \sqrt{2}-5 x)^{2} \\ & x^{2}-8 \sqrt{2} x+32=128-80 \sqrt{2} x+25 x^{2} \\ & x^{2}-3 \sqrt{2} x+4=0 \\ & (x-\sqrt{2})(x-2 \sqrt{2})=0 \\ & \quad x=\sqrt{2} \text { or } x=2 \sqrt{2} \end{aligned}$ Check solutions: Solution: $x=2 \sqrt{2}$	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Any relevant transposing - $\sqrt{32}$ or $\sqrt{128}$ in the form $\mathrm{a} \sqrt{2}$ High Partial Credit - $\quad x$ term isolated in equation Low Partial Credit: - $\sqrt{32}$ or $\sqrt{128}$ in the form $a \sqrt{2}$ - Any relevant multiplication High Partial Credit: - LHS and RHS squared correctly - Solution not in the form $a \sqrt{2}$ Full Credit -1: - Both solutions presented Note: If $\sqrt{128}$ and $\sqrt{32}$ are converted to decimals, then award low partial credit at most
(a) (ii)		Scale 5C (0, 2, 3, 5) Low Partial Credit: - List in ascending or descending order - Any term written in the form $a \sqrt{2} k$ or in the form $a \sqrt{2 k^{2}}$ High Partial Credit: - Mean or median found - Verified for a particular value of k Note: If decimals are used then award low partial credit at most

(b)	Assume $\sqrt{2}$ is rational i.e. $\sqrt{2}=\frac{p}{q}$ where p and q have no common factors (simplest form) $\begin{aligned} & \Rightarrow 2=\frac{p^{2}}{q^{2}} \\ & \Rightarrow 2 q^{2}=p^{2} \\ & \Rightarrow p^{2} \text { is even } \\ & \Rightarrow p \text { is even } \end{aligned}$ $\Rightarrow p=2 k$ for some $k \in \mathbb{Z}$ $\begin{aligned} & 2 q^{2}=p^{2} \text { becomes } 2 q^{2}=4 k^{2} \\ & \Rightarrow q^{2}=2 k^{2} \\ & \Rightarrow q^{2} \text { is even } \\ & \Rightarrow q \text { is even } \\ & \Rightarrow q=2 m \text { for some } m \in \mathbb{Z} \end{aligned}$ $\therefore \sqrt{2}=\frac{\mathrm{p}}{\mathrm{q}}=\frac{2 \mathrm{k}}{2 \mathrm{~m}}$ \Rightarrow common factor of 2 (contradiction) $\therefore \sqrt{2}$ cannot be rational.	Scale 10D (0, 4, 5, 8, 10) Low Partial Credit: - $\sqrt{2}=\frac{\mathrm{p}}{\mathrm{q}}$ or similar Mid Partial Credit - deduces that p is even or equivalent - $p=2 k$ or equivalent deduced - $p^{2}=2 q^{2}$ High Partial Credit: - $\mathrm{q}=2 \mathrm{~m}$ or equivalent deduced

