Question 6

(a) (i) Given that $x - \sqrt{32} = \sqrt{128} - 5x$, find the value of x, where $x \in \mathbb{R}$. Give your answer in the form $a\sqrt{2}$, where $a \in \mathbb{N}$.

(ii)
$$A = \left\{ \sqrt{32k^2}, \sqrt{50k^2}, \sqrt{128k^2}, \sqrt{98k^2} \right\}$$
, where $k \in \mathbb{N}$.

Show that the **mean** of set A is equal to the **median** of set A.

(b) Prove, using contradiction, that $\sqrt{2}$ is **not** a rational number.

Q6	Model Solution – 25 Marks	Marking Notes
(a) (i)	$x + 5x = \sqrt{128} + \sqrt{32}$ $6x = 8\sqrt{2} + 4\sqrt{2}$ $6x = 12\sqrt{2}$	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Any relevant transposing - $\sqrt{32}$ or $\sqrt{128}$ in the form $a\sqrt{2}$
	$x = 2\sqrt{2}$ Or $x - \sqrt{32} = \sqrt{128} - 5x$ $(x - \sqrt{32})^{2} = (\sqrt{128} - 5x)^{2}$ $(x - 4\sqrt{2})^{2} = (8\sqrt{2} - 5x)^{2}$ $x^{2} - 8\sqrt{2}x + 32 = 128 - 80\sqrt{2}x + 25x^{2}$ $x^{2} - 3\sqrt{2}x + 4 = 0$ $(x - \sqrt{2})(x - 2\sqrt{2}) = 0$ $x = \sqrt{2} \text{ or } x = 2\sqrt{2}$ Check solutions: $x = \sqrt{2}$ $\sqrt{2} - \sqrt{32} = \sqrt{128} - 5\sqrt{2}$ $-3\sqrt{2} = 3\sqrt{2} \text{ (False)}$ Solution: $x = 2\sqrt{2}$	High Partial Credit- x term isolated in equationLow Partial Credit:- $\sqrt{32}$ or $\sqrt{128}$ in the form $a\sqrt{2}$ - Any relevant multiplicationHigh Partial Credit:- LHS and RHS squared correctly- Solution not in the form $a\sqrt{2}$ Full Credit -1:- Both solutions presentedNote: If $\sqrt{128}$ and $\sqrt{32}$ are converted to decimals, then award low partial credit at most
(a) (ii)	$\sqrt{32k^2}, \sqrt{128k^2}, \sqrt{98k^2}, \sqrt{50k^2}$ $4\sqrt{2}k, 8\sqrt{2}k, 7\sqrt{2}k, 5\sqrt{2}k$ $4\sqrt{2}k, 5\sqrt{2}k, 7\sqrt{2}k, 8\sqrt{2}k$ Mean $= \frac{24\sqrt{2}k}{4} = 6\sqrt{2}k$ Median $= 6\sqrt{2}k$	Scale 5C (0, 2, 3, 5)Low Partial Credit:- List in ascending or descending order- Any term written in the form $a\sqrt{2k}$ or in the form $a\sqrt{2k^2}$ High Partial Credit:- Mean or median found- Verified for a particular value of kNote:If decimals are used then award low partial credit at most

(b) Scale 10D (0, 4, 5, 8, 10) Assume $\sqrt{2}$ is rational Low Partial Credit: i.e. $\sqrt{2} = \frac{p}{q}$ where p and q have $\sqrt{2} = \frac{p}{q}$ or similar _ no common factors (simplest form) Mid Partial Credit - deduces that p is even or equivalent $\Rightarrow 2 = \frac{p^2}{q^2}$ p = 2k or equivalent deduced -- $p^2 = 2q^2$ $\Rightarrow 2q^2 = p^2$ High Partial Credit: $\Rightarrow p^2$ is even - q = 2m or equivalent deduced \Rightarrow p is even \Rightarrow p = 2k for some k $\in \mathbb{Z}$ $2q^2 = p^2$ becomes $2q^2 = 4k^2$ \Rightarrow q² = 2k² \Rightarrow q² is even \Rightarrow q is even \Rightarrow q = 2m for some m $\in \mathbb{Z}$ $\therefore \sqrt{2} = \frac{p}{q} = \frac{2k}{2m}$ \Rightarrow common factor of 2 (contradiction) $\therefore \sqrt{2}$ cannot be rational.