Question 8 (50 marks)

The weekly revenue produced by a company manufacturing air conditioning units is seasonal. The revenue (in euro) can be approximated by the function:

$$r(t) = 22500 \cos\left(\frac{\pi}{26}t\right) + 37500, \quad t \ge 0$$

where t is the number of weeks measured from the beginning of July and $\left(\frac{\pi}{26}t\right)$ is in radians.

- (a) Find the approximate revenue produced 20 weeks after the beginning of July. Give your answer correct to the nearest euro.
- (b) Find the two values of the time t, within the first 52 weeks, when the revenue is approximately €26 250.
- (c) Find r'(t), the derivative of $r(t) = 22500 \cos\left(\frac{\pi}{26}t\right) + 37500$.
- (d) Use calculus to show that the revenue is increasing 30 weeks after the beginning of July.
- (e) Find a value for the time t, within the first 52 weeks, when the revenue is at a minimum. Use r''(t), to verify your answer.

Q8	Model Solution – 50 Marks	Marking Notes
(a)	$r(20) = 22500 \cos\left(\frac{\pi}{26}(20)\right) + 37500$ $= 22500 \cos\left(\frac{20\pi}{26}\right) + 37500$ $= €20658.51$ $≈ €20659$	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Any relevant substitution - r(20) or t = 20 High Partial Credit: - Correct substitution Full Credit -1: - Uses degrees as unit of measurement, giving an answer of €59980
(b)	$22500 \cos\left(\frac{\pi}{26}t\right) + 37500 = 26250$ $22500 \cos\left(\frac{\pi}{26}t\right) = -11250$ $\cos\left(\frac{\pi}{26}t\right) = -\frac{1}{2}$ $\frac{\pi}{26}t = \frac{2\pi}{3} \text{ and } \frac{\pi}{26}t = \frac{4\pi}{3}$ $t = \frac{52}{3} \text{ and } t = \frac{104}{3}$	Scale 10D (0, 4, 5, 8, 10) Low Partial Credit: - Equation formed - Trial and improvement with at least two values tested Mid Partial Credit: - Equation simplified to: $\cos\left(\frac{\pi}{26}t\right) = -\frac{1}{2}$ - Equation simplified to: $\cos\left(\frac{\pi}{26}t\right) = -\frac{11250}{22500}$ High Partial Credit: - 1 correct solution to equation found

(c)	$r'(t) = 22500 \left[-\sin\left(\frac{\pi}{26}t\right) \right] \left(\frac{\pi}{26}\right)$ $= -\frac{11250}{13} \pi \left[\sin\left(\frac{\pi}{26}t\right) \right]$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Some relevant differentiation High Partial Credit: - Chain rule applied
(d)	$r'(30) = -\frac{11250}{13}\pi \left[\sin(\frac{\pi}{26}(30))\right]$ = 402·164\pi = 1263·44 > 0 \Rightarrow Increasing	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Some relevant substitution into answer from (c) - $r'(t) > 0$ - $\frac{dy}{dx} > 0$ High Partial Credit: - $r'(30)$ found but no conclusion or incorrect conclusion Note: If calculus is not used then award no credit for the solution

$$-\frac{11250}{13}\pi\left[\sin\left(\frac{\pi}{26}t\right)\right]=0$$

$$\sin\left(\frac{\pi}{26}t\right) = 0$$

$$\frac{\pi}{26}t = 0 \text{ and } \frac{\pi}{26}t = \pi$$

$$t = 0$$
 and $t = 26$

$$r''(t) = -\frac{11250}{13}\pi \left[\cos\left(\frac{\pi}{26}t\right)\right] \left(\frac{\pi}{26}\right)$$

$$t = 0$$
: $r''(t) < 0 \Rightarrow Max$

$$t = 26$$
: $r''(t) > 0 \Rightarrow Min$

Or

Range:

$$[37500 - 22500, 37500 + 22500]$$

$$= [15,000,60,000]$$

$$22500\cos\left(\frac{\pi}{26}t\right) + 37500 = 15000$$

$$22500\cos\left(\frac{\pi}{26}t\right) = 15000 - 37500$$

$$22500 \cos \left(\frac{\pi}{26}t\right) = -22500$$

$$\cos\left(\frac{\pi}{26}t\right) = -1$$

$$\frac{\pi}{26}t = \pi$$

$$\therefore t = 26$$

$$r''(26) = -\frac{11250}{13}\pi \left[\cos\left(\frac{\pi}{26}\right)26\right)\right] \left(\frac{\pi}{26}\right)$$

> 0

 \Rightarrow Min

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

- r'(t) = 0
- $\frac{dy}{dx} = 0$
- States r''(t) > 0 at minimum value
- t = 26 and no further work

Mid Partial Credit

- t = 0 or t = 26 found with supporting work
- r''(t) found

High Partial Credit:

- t=26 found with supporting work and $r^{\prime\prime}(t)$ found (including use of chain rule)