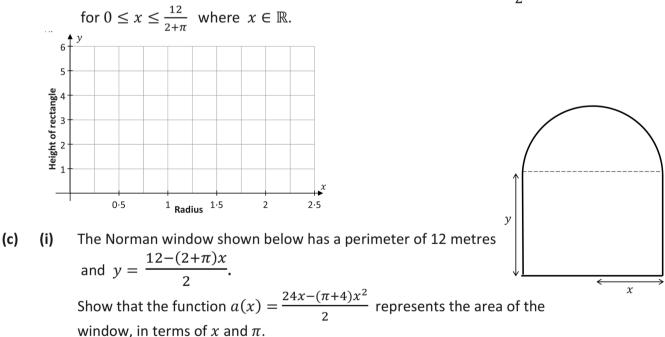
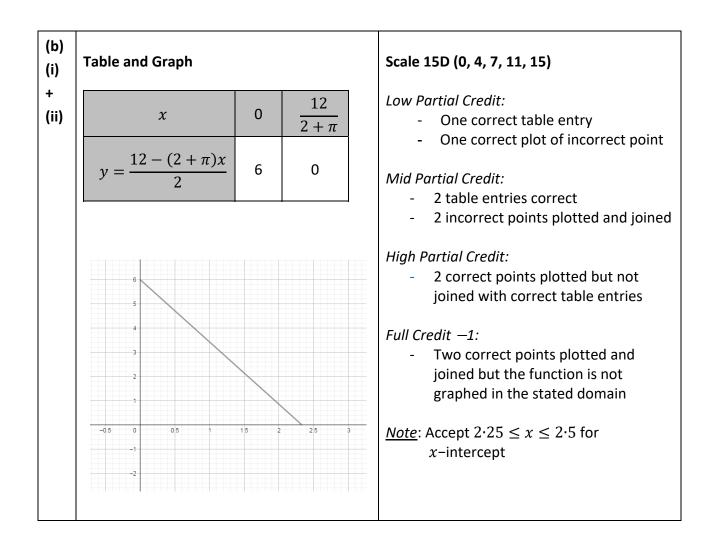

(55 marks)



Norman windows consist of a rectangle topped by a semi-circle as shown above. Let the height **of the rectangle** be y metres and the radius of the semi-circle be x metres as shown. The perimeter of the window is P.

- (a) (i) Write P in terms of x, y, and π .
 - (ii) In a particular Norman window the perimeter P = 12 metres. Show that $y = \frac{12 - (2 + \pi)x}{2}$ for $0 \le x \le \frac{12}{2 + \pi}$ where $x \in \mathbb{R}$.
- (b) (i) Complete the table on the right.


x	0	$\frac{12}{2+\pi}$
$y = \frac{12 - (2 + \pi)x}{2}$		

(ii) On the diagram below, draw the graph of the linear function, $y = \frac{12 - (2 + \pi)x}{2}$

- (ii) Find a'(x).
- (iii) Find the relationship between x and y when the area of the window in **part (c)(i)** is at its maximum.

Q9	Model Solution – 55 Marks	Marking Notes
(a) (i)	$= 2(x) + 2(y) + \frac{1}{2} (2\pi)(x)$ = 2x + 2y + \pi x	 Scale 5C (0, 2, 3, 5) Low Partial Credit: Some relevant substitution into perimeter formula Circumference of circle of radius x found i.e. 2πx High Partial Credit: Two of the three terms found
(a) (ii)	$2x + 2y + \pi x = 12$ $2y = 12 - 2x - \pi x$ $y = \frac{12 - 2x - \pi x}{2}$ $y = \frac{12 - (2 + \pi)x}{2}$	 Scale 5C (0, 2, 3, 5) Low Partial Credit: Some relevant substitution into equation High Partial Credit: y term isolated correctly in equation Note: Accept candidates answer from (a)(i) provided it doesn't oversimplify the work. Note: Must draw a relevant conclusion from incorrect work

(b) (iii)	$y = \frac{12 - (2 + \pi)x}{2}$ $y = 6 - \left(\frac{2 + \pi}{2}\right)x$ $m = -\left(\frac{2 + \pi}{2}\right)$ $m = -2.57$ Or $m = \frac{0 - 6}{\frac{12}{2 + \pi} - 0}$ $m = -\left(\frac{2 + \pi}{2}\right)$ $m = -2.57$ Intepretation: For each 1m rise in the radius of the semi- circle, the height of the rectangle falls by approximately 2.57 m	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Some substitution into slope formula - Slope isolated in the equation of the line formula - $\frac{dy}{dx}$ - $\frac{rise}{run}$ with some relevant substitution - Some effort at differentiation High Partial Credit: - Slope found <u>Note</u> : Accept $-2.7 \le$ slope ≤ -2.5 from relevant work
(c) (i)	$a = 2xy + \frac{\pi x^2}{2}$ = $\frac{2x[(12 - (2 + \pi)x]]}{2} + \frac{\pi x^2}{2}$ = $\frac{24x - 4x^2 - 2\pi x^2}{2} + \frac{\pi x^2}{2}$ = $\frac{24x - (\pi + 4)x^2}{2}$	 D. Scale 5C (0, 2, 3, 5) Low Partial Credit: area of rectangle correct area of semi-circle correct High Partial Credit: Both areas correct in terms of x and added

(c) (ii)	$a(x) = \frac{1}{2}(24x - (\pi + 4)x^2)$ $a'(x) = \frac{1}{2}(24 - 2(\pi + 4)x)$ $= 12 - (\pi + 4)x$	Scale 5B (0, 2, 5) Mid Partial Credit: - Some correct differentiation
(c) (iii)	a'(x) = 0 $12 - (\pi + 4)x = 0$ $(\pi + 4)x = 12$ $x = \frac{12}{\pi + 4} (1.68)$ $y = \frac{12 - (2 + \pi)(\frac{12}{\pi + 4})}{2} \approx 1.68)$ $= \frac{12 - (2 + \pi)(\frac{12}{\pi + 4})}{2}$ $= \frac{12(\pi + 4) - (2 + \pi)(12)}{2(\pi + 4)}$ $= \frac{12\pi + 48 - 24 - 12\pi}{2(\pi + 4)}$ $= \frac{24}{2(\pi + 4)}$ $= \frac{12}{\pi + 4}$ = x Area Max when height equals the radius	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: - $a'(x)$ used - States $\frac{dy}{dx} = 0$ Mid Partial Credit - Value of x at maximum found High Partial Credit: - Value of y at maximum fully substituted