Question 9 (55 marks)

Photograph by Lionel Wall. http://greatenglishchurches.co.uk/html/castle_rising/html

Norman windows consist of a rectangle topped by a semi-circle as shown above. Let the height **of the rectangle** be y metres and the radius of the semi-circle be x metres as shown. The perimeter of the window is P.

(a) (i) Write P in terms of x, y, and π .

(ii) In a particular Norman window the perimeter P = 12 metres.

Show that $y = \frac{12 - (2 + \pi)x}{2}$ for $0 \le x \le \frac{12}{2 + \pi}$ where $x \in \mathbb{R}$.

(b) (i) Complete the table on the right.

								-

х	0	$\frac{12}{2+\pi}$
$y = \frac{12 - (2 + \pi)x}{2}$		

(ii) On the diagram below, draw the graph of the linear function, $y = \frac{12 - (2 + \pi)x}{2}$

for
$$0 \le x \le \frac{12}{2+\pi}$$
 where $x \in \mathbb{R}$.

- (iii) Find the slope of the graph of y, correct to 2 decimal places. Interpret this slope in the context of the question.

This question continues on the next page.

(c) (i) The Norman window shown below has a perimeter of 12 metres $12-(2+\pi)x$

and
$$y = \frac{12 - (2 + \pi)x}{2}$$
.

Show that the function $a(x)=\frac{24x-(\pi+4)x^2}{2}$ represents the area of the window, in terms of x and π .

(ii) Find a'(x).

(iii) Find the relationship between x and y when the area of the window in **part** (c)(i) is at its maximum.

