Question 2

(a) The line p makes an intercept on the x-axis at $(a, 0)$ and on the y-axis at $(0, b)$, where $a, b \neq 0$.
Show that the equation of p can be written as $\frac{x}{a}+\frac{y}{b}=1$.

(b) The line l has a slope m, and contains the point $A(6,0)$.
(i) Write the equation of the line l in terms of m.
(ii) The line l cuts the line $k: 4 x+3 y=25$ at P. Find the co-ordinates of P in terms of m.
Give each co-ordinate as a fraction in its simplest form.

Q2	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{aligned} & m=\frac{b-0}{0-a}=\frac{-b}{a} \\ & y-0=\frac{-b}{a}(x-a) \\ & a y=-b x+a b \\ & b x+a y=a b \end{aligned}$ Now divide across by $a b$ $\frac{x}{a}+\frac{y}{b}=1$ Or $\begin{gathered} m=\frac{b-0}{0-a}=\frac{-b}{a} \\ y=m x+c \Rightarrow y=\frac{-b}{a} x+c . \end{gathered}$ But (o, b) is on this line, thus $\begin{gathered} b=\frac{-b}{a}(o)+c \\ \therefore b=c \end{gathered}$ Equation $y=\frac{-b}{a} x+b$ $a y=-b x+a b$ $b x+a y=a b$ Now divide across by $a b$ $\frac{x}{a}+\frac{y}{b}=1$ Or $\begin{gathered} (a, 0) \in y=m x+c=>0=m a+c \\ =>-m a=c \\ (0, b) \in y=m x+c=>b=c \\ \therefore-m a=b=>m=\frac{-b}{a} \end{gathered}$ Equation $y=\frac{-b}{a} x+b$ $a y=-b x+a b$ $b x+a y=a b$ Now divide across by $a b$ $\frac{x}{a}+\frac{y}{b}=1$ Or $\frac{x}{a}+\frac{y}{b}=1$ LHS: $\frac{x}{a}+\frac{y}{b}$ $(a, 0): \frac{a}{a}+\frac{0}{b}=1=1$ or RHS $(0, b): \frac{0}{a}+\frac{b}{b}=1=1$ or RHS	Scale 10C (0, 4, 7, 10) Low Partial Credit: Slope formula with some substitution High Partial Credit: Equation of line formula fully substituted Low Partial Credit: Slope formula with some substitution High Partial Credit: m expressed in terms of a and b, and c in terms of b Low Partial Credit: $(a, 0)$ or $((0, b)$ correctly substituted e.g. $\frac{a}{a}+\frac{0}{b}$ High Partial Credit: ($a, 0$) and ($0, b$) correctly substituted

$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & y-0=m(x-6) \text { or } y=m(x-6) \\ & \text { Or } \\ & \text { Or } \quad y=m x-6 m \\ & \therefore 0=6 m+c \Rightarrow c=-6 m \end{aligned}$	Scale 5B (0, 2, 5) Mid Partial Credit: Equation of line formula with some relevant substitution
(b) (ii)	$\begin{aligned} & y=m(x-6) \\ & 4 x+3 y=25 \\ & \Rightarrow 4 x+3 m(x-6)=25 \\ & \Rightarrow x=\frac{25+18 m}{3 m+4} \end{aligned}$ Substitute this into $y=m(x-6)$ $\begin{aligned} & y=m\left(\frac{25+18 m}{3 m+4}\right)-6 m \\ & =\frac{25 m+18 m^{2}-18 m^{2}-24 m}{3 m+4} \\ & =\frac{m}{3 m+4} \end{aligned}$ Or $\begin{gathered} 4 x+3 y=25 \cap m x-y=6 m \\ 4 x+3 y=25 \\ \underline{3 m x-3 y=18 m} \\ 4 x+3 m x=18 m+25 \\ x=\frac{25+18 m}{3 m+4} \\ 4 m x+3 m y=25 m \\ \frac{4 m x-4 y=24 m}{(3 m+4) y=m} \\ \therefore y=\frac{m}{3 m+4} \end{gathered}$	Scale 10D (0, 4, 5, 8, 10) Low Partial Credit: Indication of use of simultaneous equations Mid Partial Credit One relevant substitution High Partial Credit: x or y value found Low Partial Credit: Indication of use of simultaneous equations Mid Partial Credit One successful elimination in equations High Partial Credit: x or y value found

