(a) The point $(-2, k)$ is on the circle $(x-2)^{2}+(y-3)^{2}=65$. Find the two possible values of k, where $k \in \mathbb{Z}$.
(b) The circle s is in the first quadrant. It touches both the x-axis and the y-axis. The line $t: 3 x-4 y+6=0$ is a tangent to s as shown. Find the equation of s.

Q3	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} (-2-2)^{2}+(k-3)^{2}=65 \\ 16+(k-3)^{2}=65 \\ (k-3)^{2}=49 \\ k-3= \pm \sqrt{49}= \pm 7 \\ k=10 \text { and } k=-4 \end{gathered}$ Or $\begin{gathered} k^{2}-6 k+9=49 \\ k^{2}-6 k-40=0 \\ (k-10)(k+4)=0 \\ k=10 \text { and } k=-4 \end{gathered}$ Or $\begin{gathered} x^{2}-4 x+4+y^{2}-6 y+9=65 \\ x^{2}+y^{2}-4 x-6 y=52 \\ 4+k^{2}+8-6 k=52 \\ k^{2}-6 k-40=0 \end{gathered}$ $(k-10)(k+4)=0, \therefore k=10, k=-4$ Or Centre $(2,3)$, radius $\sqrt{65}$ $\sqrt{(2+2)^{2}+(3-k)^{2}}=\sqrt{65}$ and proceed as above	Scale $10 \mathrm{C}(0,4,7,10)$ Low Partial Credit: Some relevant substitution Centre or radius High Partial Credit: Equation in k^{2}

