(25 marks)

Question 3

- (a) The point (-2, k) is on the circle $(x 2)^2 + (y 3)^2 = 65$. Find the two possible values of k, where $k \in \mathbb{Z}$.
- (b) The circle s is in the first quadrant. It touches both the x-axis and the y-axis. The line t: 3x - 4y + 6 = 0 is a tangent to s as shown. Find the equation of s.

Q3	Model Solution – 25 Marks	Marking Notes
(a)		
	$(-2-2)^2 + (k-3)^2 = 65$	Scale 10C (0, 4, 7, 10)
	$16 + (k - 3)^2 = 65$	Low Partial Credit:
	$(k-3)^2 = 49$	Some relevant substitution
	$k-3 = \pm\sqrt{49} = \pm7$	Centre or radius
	k=10 and $k=-4$	
		High Partial Credit:
	Or	Equation in k^2
	$k^2 - 6k + 9 = 49$	
	$k^{2} - 6k + 9 = 49$ $k^{2} - 6k - 40 = 0$	
	(k - 10)(k + 4) = 0	
	k = 10 and $k = -4$	
	Or	
	$x^2 - 4x + 4 + y^2 - 6y + 9 = 65$	
	$x^{2} + y^{2} - 4x - 6y = 52$ $4 + k^{2} + 8 - 6k = 52$	
	$4 + k^2 + 8 - 6k = 52$ $k^2 - 6k - 40 = 0$	
	$\kappa^2 - 6\kappa - 40 \equiv 0$	
	$(k-10)(k+4) = 0, \therefore k = 10, \ k = -4$	
	Or	
	Centre (2, 3) , radius $\sqrt{65}$	
	$\sqrt{(2+2)^2+(3-k)^2} = \sqrt{65}$	
	and proceed as above	
	-	
<u>.</u>		

/h)		
(b)	Both axes are tangents to the circle. centre (-g,-g) and radius is g Perpendicular distance (-g,-g) to $3x - 4y + 6 = 0$ is equal to the radius $\frac{-3g + 4g + 6}{5} = -g$ $g + 6 = \pm 5g$ $g + 6 = -5g, \therefore -g = 1$ Centre (1, 1) and radius 1 Equation: $(x - 1)^2 + (y - 1)^2 = 1$ or $x^2 + y^2 - 2x - 2y + 1 = 0$ Or s is a tangent to both axes therefore $c = g^2 = f^2$	Scale 15D (0, 5, 7, 11, 15) Low Partial Credit: centre (-g,-g) or equivalent Mid Partial Credit: Substitution into perpendicular distance formula completed Perpendicular distance of centre to tangent equals radius with some substitution High Partial Credit: equation in g or equivalent
	So equation is in the form $x^{2} + y^{2} + 2gx + 2gy + g^{2} = 0$ $3x - 4y + 6 = 0 => y = \frac{3x+6}{4}$ Substitute into circle: $x^{2} + \left(\frac{3x+6}{4}\right)^{2} + 2gx + \frac{2g(3x+6)}{4} + g^{2} = 0$ $=> 25x^{2} + x(36 + 56g) + 36 + 48g + 16g^{2} = 0$ Tangent therefore $b^{2} = 4ac$ $(36 + 56g)^{2} = 4(25)(36 + 48g + 16g^{2})$ $2g^{2} - g - 3 = 0$ $g = -1$ and $g = \frac{3}{2}$ But can't have positive g as the co-ordinate -g is in first quadrant. $=> g = -1$. Therefore equation is $x^{2} + y^{2} - 2x - 2y + 1 = 0$ or $(x - 1)^{2} + (y - 1)^{2} = 1$	Low Partial Credit: $c = g^2$ or f^2 Effort to express x in terms of y or equivalent <i>Mid Partial Credit:</i> Substitution into circle equation completed <i>High Partial Credit:</i> Quadratic equation in g or f