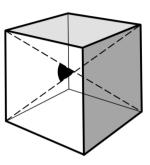
Question 4 (25 marks)

- (a) Show that $\cos 2\theta = 1 2\sin^2 \theta$.
- **(b)** Find the cosine of the acute angle between two diagonals of a cube.



Q4	Model Solution – 25 Marks	Marking Notes
(a)	$\cos(A+B) = \cos A \cos B - \sin A \sin B$	Scale 10C (0, 4, 7, 10)
	$\cos 2A = \cos^2 A - \sin^2 A$	Low Partial Credit: $cos(A + B)$ formula with some substitution
	$\cos 2A = (1 - \sin^2 A) - \sin^2 A$	$\cos^2 A + \sin^2 A = 1$ indicated or clearly
	$\cos 2A = 1 - 2\sin^2 A$	implied
	Or	
	Taking RHS $1 - 2\sin^2 A = 1 - 2(1 - \cos^2 A)$ $= -1 + 2\cos^2 A$ $= -(\cos^2 A + \sin^2 A) + 2\cos^2 A$ $= \cos^2 A - \sin^2 A$ $= \cos A \cos A - \sin A \sin A = \cos 2A$	High Partial Credit: $\cos 2A = \cos^2 A - \sin^2 A$
	Or $(\cos A + i \sin A)^2 = \cos 2A + i \sin 2A$	
	$(\cos A + i \sin A)^2$	Low Partial Credit:
	$= \cos^2 A + 2i \sin A \cos A$ $+ (i \sin A)^2$	$\cos^2 A + \sin^2 A = 1$ indicated or clearly implied
	$\cos 2A = \cos^2 A - \sin^2 A$	$(\cos A + i \sin A)^2$ expanded
	$\cos 2A = (1 - \sin^2 A) - \sin^2 A$	High Partial Credit:
	$\cos 2A = 1 - 2\sin^2 A$	$\cos 2A = \cos^2 A - \sin^2 A$

(b)

Let length of side be xDiagonal of any face $= \sqrt{x^2 + x^2} = \sqrt{2}x$

Internal diagonal $= x^2 + (\sqrt{2}x)^2 = \sqrt{3}x$

By cosine rule:

$$x^{2} = \left(\frac{\sqrt{3}x}{2}\right)^{2} + \left(\frac{\sqrt{3}x}{2}\right)^{2} - 2\frac{\sqrt{3}x}{2}\frac{\sqrt{3}x}{2}\cos A$$

$$\cos A = \frac{\left(\frac{\sqrt{3}x}{2}\right)^2 + \left(\frac{\sqrt{3}x}{2}\right)^2 - x^2}{2\left(\frac{\sqrt{3}x}{2}\right)\left(\frac{\sqrt{3}x}{2}\right)}$$
$$\cos A = \frac{1}{3}$$

Or

Drop perpendicular from intersecting diagonals to side of cube, thereby creating angle A/2 at vertex in a right-angled triangle.

$$\sin\frac{A}{2} = \frac{\frac{x}{2}}{\frac{\sqrt{3}x}{2}} = \frac{1}{\sqrt{3}}$$

$$\therefore \cos \frac{A}{2} = \frac{\sqrt{2}}{\sqrt{3}}$$

$$\cos A = 2\cos^2\frac{A}{2} - 1 = 2\left(\frac{2}{3}\right) - 1 = \frac{1}{3}$$

Also: $\sin \frac{A}{2} = \frac{1}{\sqrt{3}} \rightarrow \frac{A}{2} = 35.2643896^{\circ}$

$$A = 70.5287792^{\circ}$$

$$\cos A = 0.33236$$

Scale 15D (0, 5, 7, 11, 15)

Low Partial Credit: Length of any diagonal formulated

Mid Partial Credit Internal diagonal found

High Partial Credit: Fully substituted cosine rule

Note: Accept and mark work where a consistent numerical value is assigned to one side of the cube.

Low Partial Credit: Length of any diagonal formulated

Mid Partial Credit
Internal diagonal found

High Partial Credit: $\sin \frac{A}{2}$ fully substituted