

Question 9 (55 marks)

The diagram below shows a triangular patch of ground ΔSGH , with |SH| = 58 m, |GH| = 30 m, and $|\angle GHS| = 68^{\circ}$. The circle is a helicopter pad. It is the incircle of ΔSGH and has centre P.

- (a) Find |SG|. Give your answer in metres, correct to 1 decimal place.
- **(b)** Find $|\angle HSG|$. Give your answer in degrees, correct to 2 decimal places.
- (c) Find the area of $\triangle SGH$. Give your answer in m², correct to 2 decimal places.
- (d) (i) Find the area of ΔHSP , in terms of r, where r is the radius of the helicopter pad.
 - (ii) Show that the area of $\triangle SGH$, in terms of r, can be written as $71 \cdot 2r$ m².
 - (iii) Find the value of r. Give your answer in metres, correct to 1 decimal place.
- (e) [ST] is a vertical pole at the point S.The angle of elevation of the top of the pole from the point P is 14°.Find the height of the pole.

Q9	Model Solution – 55 Marks	Marking Notes
(a)	$ SG ^2 = 30^2 + 58^2 - 2(30)(58)(\cos 68)$ = 2960·369 SG = 54·409 m SG = 54·4	Scale 10C (0, 4, 7, 10) Low Partial Credit: Some relevant substitution into correct cosine formula High Partial Credit: Formula fully substituted
(b)	$\frac{54\cdot4}{\sin 68} = \frac{30}{\sin \angle HSG}$ $\sin \angle HSG = 0.51131$ $ \angle HSG = 30.75$ Or $\cos \angle HSG = \frac{54\cdot4^2 + 58^2 - 30^2}{2(54\cdot4)(58)}$ $= 0\cdot859432$ $ \angle HSG = 30.747^\circ = 30.75$	Scale 10C (0, 4, 7, 10) Low Partial Credit: Some relevant substitution into relevant formula High Partial Credit: Formula fully substituted Note: Finds $ \angle HGS => \checkmark \#$
(c)	Area $\Delta GSH = \frac{1}{2}(30)(58) \sin 68 = 806.65$ Also Area ΔGSH : $\frac{1}{2}(54.4)(58) \sin 30.75$ and $\frac{1}{2}(54.4)(30) \sin 81.25$	Scale 15C (0, 5, 10, 15) Low Partial Credit: Some substitution into area formula High Partial Credit: Formula fully substituted
(d) (i)	$\frac{1}{2}(58)(r)$ or $29r$	Scale 5B (0, 2, 5) Mid Partial Credit: Right angle indicated Relevant triangle indicated on diagram Area of triangle formula with some substitution

(d) (ii)	Area $\triangle GHS$ $= \frac{1}{2}(30)(r) + \frac{1}{2}(54\cdot4)(r) + \frac{1}{2}(58)(r)$ $= 15r + 27\cdot2r + 29r = 71\cdot2r$	Scale 5C (0, 2, 3, 5) Low Partial Credit: Relevant use of previous answer in this part Indication of 3 relevant triangle areas to be added Area of 1 additional triangle (in terms of r) High Partial Credit: Addition of 2 areas (each written in terms of r)
(d) (iii)	$71 \cdot 2r = 806 \cdot 62$ $r = \frac{806 \cdot 62}{71 \cdot 2}$ $= 11 \cdot 3289 = 11 \cdot 3$	Scale 5C (0, 2, 3, 5) Low Partial Credit: Both relevant answers presented High Partial Credit: Areas equated
(e) (ii)	$\tan 14 = \frac{ TS }{ PS }$ $\sin 15.375 = \frac{11.3}{ PS } = 42.51$ $=> PS = 42.619$ $\tan 14 = \frac{ TS }{42.619}$ $ TS = 10.626 = 10.6$ Or $ \angle HPS = 180 - 15.375 - 34$ $= 130.625^{\circ}$ $\frac{\sin 130.625}{58} = \frac{\sin 34}{ PS }$ $ PS = 42.73$ $\tan 14 = \frac{ TS }{42.73}$ $ TS = 10.653 = 10.7$	Scale 5C (0, 2, 3, 5) Low Partial Credit: Some relevant substitution High Partial Credit: Formula fully substituted