Question 9

The diagram below shows a triangular patch of ground $\triangle S G H$, with $|S H|=58 \mathrm{~m},|G H|=30 \mathrm{~m}$, and $|\angle G H S|=68^{\circ}$. The circle is a helicopter pad. It is the incircle of $\triangle S G H$ and has centre P.

(a) Find $|S G|$. Give your answer in metres, correct to 1 decimal place.
(b) Find $|\angle H S G|$. Give your answer in degrees, correct to 2 decimal places.
(c) Find the area of $\triangle S G H$. Give your answer in m^{2}, correct to 2 decimal places.
(d) (i) Find the area of $\triangle H S P$, in terms of r, where r is the radius of the helicopter pad.
(ii) Show that the area of $\triangle S G H$, in terms of r, can be written as $71.2 r \mathrm{~m}^{2}$.
(iii) Find the value of r. Give your answer in metres, correct to 1 decimal place.
(e) $[S T]$ is a vertical pole at the point S.

The angle of elevation of the top of the pole from the point P is 14°.
Find the height of the pole.

Q9	Model Solution - 55 Marks	Marking Notes
	$\begin{aligned} & \|S G\|^{2}=30^{2}+58^{2}-2(30)(58)(\cos 68) \\ & =2960 \cdot 369 \\ & \|S G\|=54 \cdot 409 \mathrm{~m} \\ & \|S G\|=54 \cdot 4 \end{aligned}$	Scale $10 \mathrm{C}(0,4,7,10)$ Low Partial Credit: Some relevant substitution into correct cosine formula High Partial Credit: Formula fully substituted
(b)	$\begin{gathered} \frac{54 \cdot 4}{\sin 68}=\frac{30}{\sin \angle H S G} \\ \sin \angle H S G=0.51131 \\ \|\angle H S G\|=30.75 \\ \text { Or } \\ \cos \angle H S G=\frac{54 \cdot 4^{2}+58^{2}-30^{2}}{2(54 \cdot 4)(58)} \\ =0 \cdot 859432 \\ \|\angle H S G\|=30.747^{\circ}=30.75 \end{gathered}$	Scale $10 \mathrm{C}(0,4,7,10)$ Low Partial Credit: Some relevant substitution into relevant formula High Partial Credit: Formula fully substituted Note: Finds $\|\angle H G S\|=>\downarrow \#$
(c)	$\text { Area } \Delta G S H=\frac{1}{2}(30)(58) \sin 68=806 \cdot 65$ Also Area $\triangle G S H$: $\begin{gathered} \frac{1}{2}(54 \cdot 4)(58) \sin 30 \cdot 75 \\ \text { and } \\ \frac{1}{2}(54 \cdot 4)(30) \sin 81 \cdot 25 \end{gathered}$	Scale 15C (0, 5, 10, 15) Low Partial Credit: Some substitution into area formula High Partial Credit: Formula fully substituted
$\begin{aligned} & \text { (d) } \\ & \text { (i) } \end{aligned}$	$\frac{1}{2}(58)(r) \text { or } 29 r$	Scale 5B (0, 2, 5) Mid Partial Credit: Right angle indicated Relevant triangle indicated on diagram Area of triangle formula with some substitution

(d) (ii)	$\begin{aligned} & \text { Area } \triangle G H S \\ & =\frac{1}{2}(30)(r)+\frac{1}{2}(54 \cdot 4)(r)+\frac{1}{2}(58)(r) \\ & \quad=15 r+27 \cdot 2 r+29 r=71 \cdot 2 r \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: Relevant use of previous answer in this part Indication of 3 relevant triangle areas to be added Area of 1 additional triangle (in terms of r) High Partial Credit: Addition of 2 areas (each written in terms of r)
(d) (iii)	$\begin{gathered} 71 \cdot 2 r=806 \cdot 62 \\ r=\frac{806 \cdot 62}{71 \cdot 2} \\ =11 \cdot 3289=11 \cdot 3 \end{gathered}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: Both relevant answers presented High Partial Credit: Areas equated
(e) (ii)	$\begin{gathered} \tan 14=\frac{\|T S\|}{\|P S\|} \\ \sin 15 \cdot 375=\frac{11 \cdot 3}{\|P S\|}=42 \cdot 51 \\ =>\|P S\|=42 \cdot 619 \\ \tan 14=\frac{\|T S\|}{42 \cdot 619} \\ \text { Or } \quad \begin{array}{c} \|T S\|=10 \cdot 626=10 \cdot 6 \\ \|\angle H P S\|=180-15 \cdot 375-34 \\ =130 \cdot 625^{\circ} \\ \sin 130 \cdot 625 \\ 58 \\ \|P S\|=42 \cdot 73 \\ \sin 34 \\ \tan 14=\frac{\|T S\|}{42 \cdot 73} \\ \|T S\|=10.653=10.7 \end{array} \end{gathered}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: Some relevant substitution High Partial Credit: Formula fully substituted

