Question 1

(a) $f(x)=x^{2}+5 x+p$ where $x \in \mathbb{R},-3 \leq p \leq 8$, and $p \in \mathbb{Z}$.
(i) Find the value of p for which $x+3$ is a factor of $f(x)$.
(ii) Find the value of p for which $f(x)$ has roots which differ by 3 .
(iii) Find the two values of p for which the graph of $f(x)$ will not cross the x-axis.
(b) Find the range of values of x for which $|2 x+5|-1 \leq 0$, where $x \in \mathbb{R}$.

Q1	Model Solution - 25 Marks	Marking Notes
(i)	$\begin{aligned} & f(-3)=0 \\ & f(-3)=-3^{2}+5(-3)+p=0 \\ & 9-15+p=0 \\ & p=6 \end{aligned}$ Or $\begin{gathered} x^{2}+5 x+p=(x+3)(x+a) \\ =x^{2}+x(a+3)+3 a \\ a+3=5 \\ a=2 \\ p=3 a \\ p=6 \end{gathered}$ Or $\begin{gathered} x+2 \\ \begin{array}{c} x+3 \\ \\ \frac{x^{2}+5 x+p}{} \\ \frac{x^{2}+2 x}{3 x+p} \\ \\ \\ \\ p-6=0 p-6 \\ p=6 \end{array} \end{gathered}$	Scale 10C (0, 4, 8, 10) Low Partial Credit: Demonstrates understanding of $x+3$ as factor or -3 as root e.g. $(x+3), f(-3)$ High Partial Credit: Relevant equation in p (with p as only unknown)

(a) (ii)	$\begin{gathered} x^{2}+5 x+p=(x-\alpha)(x-\alpha-3) \\ =x^{2}+x(-\alpha-\alpha-3)+\alpha^{2}+3 \alpha \\ -2 \alpha-3=5 \\ \alpha=-4 \\ p=16-12 \\ p=4 \\ \text { Or } \\ \alpha, \alpha+3=\text { roots } \\ \alpha+\alpha+3=-5 \\ 2 \alpha=-8 \\ \alpha=-4 \\ \text { and } \alpha+3=-1 \\ p=(-1)(-4)=4 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: Demonstrates understanding of 3 as difference of roots e.g. α with $\alpha \pm 3$ $x^{2}-x(\text { sum })+\text { product }=0$ One correct value for p $x^{2}+5 x+p>0$ Sketch of U-shaped quadratic with turning point above the x -axis High Partial Credit: Relevant equation in α (with α as only unknown Full Credit (-1): $p>6 \cdot 25$
(a) (iii)	$\begin{aligned} & b^{2}-4 a c<0 \\ & 5^{2}-4(1)(p)<0 \\ & 25-4 p<0 \\ & 4 p>25 \\ & p>6 \cdot 25 \\ & p=7 \text { and } p=8 \end{aligned}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $b^{2}-4 a c$ One correct value for p $x^{2}+5 x+p>0$ High Partial Credit: Relevant inequality in p (with p as only unknown Full credit (-1): $p>6 \cdot 25$

(b)	$\begin{gathered} -1 \leq 2 x+5 \leq 1 \\ -6 \leq 2 x \leq-4 \\ -3 \leq x \leq-2 \end{gathered}$ $2 x+5 \leq 1$ $2 x \leq-4$ $x \leq-2$ $-1 \leq 2 x+5$ $-6 \leq 2 x$ $-3 \leq x$ $-3 \leq x \leq-2$ Or $\begin{aligned} & (2 x+5)^{2} \leq 1 \\ & 4 x^{2}+20 x+25 \leq 1 \\ & 4 x^{2}+20 x+24 \leq 0 \\ & x^{2}+5 x+6 \leq 0 \\ & (x+2)(x+3) \leq 0 \\ & x=-2, x=-3 \\ & \quad-3 \leq x \leq-2 \end{aligned}$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: $(2 x+5)^{2} \leq 1$ one linear inequality Mid Partial Credit: $-1 \leq 2 x+5 \leq 1$ Identifies both linear inequalities Quadratic inequality involving 0 High Partial Credit: Finding -3 and -2 in Methods 1 or 2 Roots of quadratic found $-6 \leq 2 x \leq-4$ or equivalent Note: Accept $-3<x<-2$

