Question 1

- (a) $f(x) = x^2 + 5x + p$ where $x \in \mathbb{R}$, $-3 \le p \le 8$, and $p \in \mathbb{Z}$.
 - (i) Find the value of p for which x + 3 is a factor of f(x).
 - (ii) Find the value of p for which f(x) has roots which differ by 3.
 - (iii) Find the two values of p for which the graph of f(x) will not cross the x-axis.
- (b) Find the range of values of x for which $|2x + 5| 1 \le 0$, where $x \in \mathbb{R}$.

Q1	Model Solution – 25 Marks	Marking Notes
(a)		
(i)	f(-3) = 0	Scale 10C (0, 4, 8, 10)
	$f(-3) = -3^2 + 5(-3) + p = 0$	Low Partial Credit: Demonstrates understanding of $x + 2$ as
	9 - 15 + p = 0	factor or -3 as root e.g. $(x + 3)$. $f(-3)$
	n = 6	
	p = 0	High Partial Credit:
	Or	Relevant equation in p (with p as only
	$x^{2} + 5x + p = (x + 3)(x + a)$	unknown)
	$= x^{2} + x(a+3) + 3a$	
	a + 3 = 5	
	a = 2	
	p = 3a	
	p = 6	
	Or	
	<i>x</i> + 2	
	$x + 3 = x^2 + 5x + p$	
	$x^2 + 2x$	
	3x + p	
	3x+6	
	$p-6 = 0 \ p-6$	
	p = 6	
	-	

(a) (ii)	$x^{2} + 5x + p = (x - \alpha)(x - \alpha - 3)$ $= x^{2} + x(-\alpha - \alpha - 3) + \alpha^{2} + 3\alpha$ $-2\alpha - 3 = 5$ $\alpha = -4$ $p = 16 - 12$ $p = 4$ Or $\alpha, \alpha + 3 = roots$ $\alpha + \alpha + 3 = -5$ $2\alpha = -8$ $\alpha = -4$ and $\alpha + 3 = -1$ $p = (-1)(-4) = 4$	Scale 5C (0, 3, 4, 5) Low Partial Credit: Demonstrates understanding of 3 as difference of roots e.g. α with $\alpha \pm 3$ $x^2 - x(sum) + product = 0$ One correct value for p $x^2 + 5x + p > 0$ Sketch of U-shaped quadratic with turning point above the x-axis High Partial Credit: Relevant equation in α (with α as only unknown Full Credit (- 1): p > 6.25
(a) (iii)	$b^{2} - 4ac < 0$ $5^{2} - 4(1)(p) < 0$ 25 - 4p < 0 4p > 25 p > 6.25 p = 7 and $p = 8$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $b^2 - 4ac$ One correct value for p $x^2 + 5x + p > 0$ High Partial Credit: Relevant inequality in p (with p as only unknown Full credit (-1): p > 6.25

(b)			
	$-1 \le 2x + 5 \le 1$	$2x + 5 \le 1$	Scale 5D (0, 2, 3, 4, 5)
	-6 < 2x < -4	$2x \leq -4$	Low Partial Credit:
		x < -2	$(2x+5)^2 \le 1$
	$-3 \leq x \leq -2$		one linear inequality
		$-1 \le 2x + 5$	Mid Partial Credit:
		$-6 \le 2x$	$-1 \le 2x + 5 \le 1$
		$-3 \le x$	Identifies both linear inequalities
		$-3 \le x \le -2$	Quadratic inequality involving U
			High Partial Credit:
			Finding –3 and –2 in Methods 1 or 2
	Or		$-6 \le 2x \le -4$ or equivalent
	$(2x+5)^2 \le 1$		Note: Accept $-3 < x < -2$
	$4x^2 + 20x + 25$	$5 \leq 1$	
	$4x^2 + 20x + 24$	$k \leq 0$	
	$x^2 + 5x + 6 \le 0$	0	
	(x+2)(x+3)	≤ 0	
	x = -2, x = -3	1	
	$-3 \le x \le -2$		
1			