Question 2

(a) Find the two complex numbers z_{1} and z_{2} that satisfy the following simultaneous equations, where $i^{2}=-1$:

$$
\begin{aligned}
i z_{1} & =-4+3 i \\
3 z_{1}-z_{2} & =11+17 i .
\end{aligned}
$$

Write your answers in the form $a+b i$ where $a, b \in \mathbb{Z}$.
(b) The complex numbers $3+2 i$ and $5-i$ are the first two terms of a geometric sequence.
(i) Find r, the common ratio of the sequence.

Write your answer in the form $a+b i$ where $a, b \in \mathbb{Z}$.
(ii) Use de Moivre's Theorem to find T_{9}, the ninth term of the sequence. Write your answer in the form $a+b i$, where $a, b \in \mathbb{Z}$.

Q2	Model Solution - 25 Marks	Marking Notes
	$\begin{gathered} i z_{1}=-4+3 i \\ i\left(i z_{1}\right)=i(-4+3 i) \\ -z_{1}=-4 i+3 i^{2} \\ z_{1}=3+4 i \\ 3 z_{1}-z_{2}=3(3+4 i)-z_{2}=11+17 i \\ z_{2}=9+12 i-11-17 i \\ z_{2}=-2-5 i \end{gathered}$ Or $z_{1}=\frac{(-4+3 i)(-i)}{(i)(-1)}$ $z_{1}=3+4 i$ and continues	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: Either equation multiplied/divided by \boldsymbol{i} Mid Partial Credit: z_{1} found z_{2} written in terms of z_{1} with z_{1} substituted z_{1} eliminated High Partial Credit z_{1} found and substituted into second equation z_{2} found by elimination
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	$\begin{gathered} r=\frac{T_{2}}{T_{1}}=\frac{5-i}{3+2 i} \times \frac{3-2 i}{3-2 i} \\ r=\frac{15-13 i-2}{9+4} \\ r=\frac{13-13 i}{13} \\ r=1-i \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $\frac{T_{2}}{T_{1}}$ High Partial Credit: $\frac{5-i}{3+2 i} \times \frac{3-2 i}{3-2 i}$
(b) (ii)	$\begin{gathered} T_{9}=a r^{8} \\ T_{9}=(3+2 i)(1-i)^{8} \\ T_{9}=(3+2 i)\left(\sqrt{2}\left(\cos \frac{7 \pi}{4}+i \sin \frac{7 \pi}{4}\right)\right)^{8} \\ T_{9}=(3+2 i)(\sqrt{2})^{8}\left(\cos \frac{7 \pi(8)}{4}\right. \\ \left.+i \sin \frac{7 \pi(8)}{4}\right) \\ T_{9}=(3+2 i)(16)(\cos 14 \pi+i \sin 14 \pi) \\ T_{9}=(3+2 i)(16)(1+0 i) \\ T_{9}=48+32 i \end{gathered}$	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: $T_{9}=a r^{8}$ Any correct use of De Moivre Some use of De Moivre's Theorem on r Mid Partial Credit: Modulus and argument found for r High Partial Credit: Solution in polar form with some simplification Note: Accept candidates r from (b)(i)

