Question 2

(a) Find the two complex numbers z_1 and z_2 that satisfy the following simultaneous equations, where $i^2 = -1$:

$$\begin{aligned} & iz_1 &= -4 + 3i \\ & 3z_1 - z_2 &= 11 + 17i. \end{aligned}$$

Write your answers in the form a + bi where $a, b \in \mathbb{Z}$.

- (b) The complex numbers 3 + 2i and 5 i are the first two terms of a **geometric** sequence.
 - (i) Find r, the common ratio of the sequence. Write your answer in the form a + bi where $a, b \in \mathbb{Z}$.
 - (ii) Use de Moivre's Theorem to find T_9 , the ninth term of the sequence. Write your answer in the form a + bi, where $a, b \in \mathbb{Z}$.

Q2	Model Solution – 25 Marks	Marking Notes
(a)	$iz_1 = -4 + 3i$	Scale 5D (0, 2, 3, 4, 5)
	$i(iz_1) = i(-4 + 3i)$	Low Partial Credit:
	$-z_1 = -4i + 3i^2$	Either equation multiplied/divided by $m{i}$
	-	Mid Partial Credit:
	$z_1 = 3 + 4i$	z_1 found
	$3z_1 - z_2 = 3(3+4i) - z_2 = 11 + 17i$	z_2 written in terms of z_1 with
	$z_2 = 9 + 12i - 11 - 17i$	z_1 substituted
	$z_2 = -2 - 5i$	z_1 eliminated
	Or	High Partial Credit
		z_1 found and substituted into second
	$z_1 = \frac{(-4+3i)(-i)}{(i)(-1)}$	equation z_2 found by elimination
		-2
	$z_1 = 3 + 4i$ and continues	
(b)		
(i)	$r = \frac{T_2}{T_1} = \frac{5-i}{3+2i} \times \frac{3-2i}{3-2i}$	Scale 5C (0, 3, 4, 5)
	1	Low Partial Credit: T ₂
	$r = \frac{15 - 13i - 2}{9 + 4}$	$\frac{T_2}{T_1}$
	13 – 13 <i>i</i>	High Partial Credit:
	$r = \frac{13 - 13i}{13}$	$\frac{5-i}{3+2i} \times \frac{3-2i}{3-2i}$
	r = 1 - i	$\overline{3+2i} \times \overline{3-2i}$
(b)		
(ii)	$T_9 = ar^8$	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit:
	$T_9 = (3+2i)(1-i)^8$	$T_9 = ar^8$
	$T = (2 + 2i) \left(\sqrt{2} \left(\cos^{7\pi} - 7\pi \right) \right)^8$	Any correct use of De Moivre
	$T_{9} = (3+2i) \left(\sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right) \right)^{8}$	Some use of De Moivre's Theorem on r
	$T_9 = (3+2i)(\sqrt{2})^8 \left(\cos\frac{7\pi(8)}{4}\right)$	Mid Partial Credit:
		Modulus and argument found for r
	$+i\sin\frac{7\pi(8)}{4}$	High Partial Credit:
	1 /	Solution in polar form with some
	$T_9 = (3+2i)(16)(\cos 14\pi + i\sin 14\pi)$ $T_7 = (2+2i)(16)(1+0i)$	simplification
	$T_9 = (3+2i)(16)(1+0i)$	Note : Accept candidates <i>r</i> from (b)(i)
	$T_9 = 48 + 32i$	