Question 3 (25 marks)

- (a) f(x) = 6x 5 and $g(x) = \frac{x+5}{6}$. Investigate if f(g(x)) = g(f(x)).
- **(b)** The real variables y and x are related by $y = 5x^2$.
 - (i) The equation $y = 5x^2$ can be rewritten in the form $\log_5 y = a + b \log_5 x$. Find the value of a and the value of b.
 - (ii) Hence, or otherwise, find the real values of y for which

$$\log_5 y = 2 + \log_5 \left(\frac{126}{25} x - 1 \right).$$

Q3	Model Solution – 25 Marks	Marking Notes
(a)	$fg(x) = f\left(\frac{x+5}{6}\right)$ $fg(x) = 6\left(\frac{x+5}{6}\right) - 5 = x$ $gf(x) = g(6x-5)$ $gf(x) = \frac{(6x-5)+5}{6} = \frac{6x}{x} = x$	Scale 10C (0, 4, 8, 10) Low Partial Credit: $f\left(\frac{x+5}{6}\right)$ $g(6x-5)$ Particular case verification High Partial Credit: One correct composition simplified to x
(b) (i)	$\log_5 y = \log_5 5x^2$ $\log_5 y = \log_5 5 + \log_5 x^2$ $\log_5 y = 1 + 2\log_5 x$ $a = 1 \text{ and } b = 2$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $\log_5 5x^2 = \log_5 y$ $\log_5 y = \log_5 5x^2$ High Partial Credit: $\log_5 y = \log_5 5 + \log_5 x^2$
(b) (ii)	$\log_5 y = \log_5 5x^2 = 2 + \log_5 \left(\frac{126x}{25} - 1\right)$ $\log_5 5x^2 = \log_5 \left(\frac{126x}{25} - 1\right) \times 25$ $5x^2 = 126x - 25$ $5x^2 - 126x + 25 = 0$ $(5x - 1)(x - 25) = 0$ $x = \frac{1}{5} \text{ or } x = 25$ $y = 5x^2 = 5\left(\frac{1}{5}\right)^2 2 = \frac{1}{5}$ or $y = 5(25)^2 = 3125$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Some relevant use of laws of logs Mid Partial Credit: Quadratic equation High Partial Credit: x values found Note: If 2 is incorrectly (non log) dealt with then award MPC at most Note: If incorrect work leads to a non-quadratic equation then award MPC at most