(a) $\quad f(x)=6 x-5$ and $g(x)=\frac{x+5}{6}$. Investigate if $f(g(x))=g(f(x))$.
(b) The real variables y and x are related by $y=5 x^{2}$.
(i) The equation $y=5 x^{2}$ can be rewritten in the form $\log _{5} y=a+b \log _{5} x$. Find the value of a and the value of b.
(ii) Hence, or otherwise, find the real values of \boldsymbol{y} for which

$$
\log _{5} y=2+\log _{5}\left(\frac{126}{25} x-1\right)
$$

Q3	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} f g(x)=f\left(\frac{x+5}{6}\right) \\ f g(x)=6\left(\frac{x+5}{6}\right)-5=x \\ g f(x)=g(6 x-5) \\ g f(x)=\frac{(6 x-5)+5}{6}=\frac{6 x}{x}=x \end{gathered}$	Scale $10 \mathrm{C}(0,4,8,10)$ Low Partial Credit: $\begin{aligned} & f\left(\frac{x+5}{6}\right) \\ & g(6 x-5) \end{aligned}$ Particular case verification High Partial Credit: One correct composition simplified to x
(b) (i)	$\begin{gathered} \log _{5} y=\log _{5} 5 x^{2} \\ \log _{5} y=\log _{5} 5+\log _{5} x^{2} \\ \log _{5} y=1+2 \log _{5} x \\ a=1 \text { and } b=2 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $\begin{gathered} \log _{5} 5 x^{2}=\log _{5} y \\ \log _{5} y=\log _{5} 5 x^{2} \end{gathered}$ High Partial Credit: $\log _{5} y=\log _{5} 5+\log _{5} x^{2}$
(ii)	$\begin{gathered} \log _{5} y=\log _{5} 5 x^{2}=2+\log _{5}\left(\frac{126 x}{25}-1\right) \\ \log _{5} 5 x^{2}=\log _{5}\left(\frac{126 x}{25}-1\right) \times 25 \\ 5 x^{2}=126 x-25 \\ 5 x^{2}-126 x+25=0 \\ (5 x-1)(x-25)=0 \\ x=\frac{1}{5} \text { or } x=25 \\ y=5 x^{2}=5\left(\frac{1}{5}\right)^{2} 2=\frac{1}{5} \\ \text { or } y=5(25)^{2}=3125 \end{gathered}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Some relevant use of laws of logs Mid Partial Credit: Quadratic equation High Partial Credit: x values found Note: If 2 is incorrectly (non log) dealt with then award MPC at most Note: If incorrect work leads to a nonquadratic equation then award MPC at most

