(45 marks)

Question 8

A rectangle is inscribed in a circle of radius 5 units and centre O(0, 0) as shown below. Let R(x, y), where $x, y \in \mathbb{R}$, be the vertex of the rectangle in the first quadrant as shown. Let θ be the angle between [OR] and the positive x-axis, where $0 \le \theta \le \frac{\pi}{2}$.

- (a) (i) The point R(x, y) can be written as $(a \cos \theta, b \sin \theta)$, where $a, b \in \mathbb{R}$. Find the value of a and the value of b.
 - (ii) Show that $A(\theta)$, the area of the rectangle, measured in square units, can be written as $A(\theta) = 50 \sin 2\theta$.
 - (iii) Use calculus to show that the rectangle with maximum area is a square.
 - (iv) Find this maximum area.
- (b) A person who is 2 m tall is walking towards a streetlight of height 5 m at a speed of 1.5 m/s. Find the rate, in m/s, at which the length of the person's shadow (x), cast by the streetlight, is changing.

Q8	Model Solution – 45 Marks	Marking Notes
(a) (i)	$\cos \theta = \frac{x}{5} \qquad \sin \theta = \frac{y}{5}$ $5 \cos \theta = x \qquad 5 \sin \theta = y$ $(x, y) = (5 \cos \theta, 5 \sin \theta)$ $\therefore a = 5, b = 5$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $\cos \theta = \frac{x}{5}$ or equivalent High Partial Credit: a or b found Correct answer without work
(a) (ii)	$A(\theta) = (10\cos\theta) \times (10\sin\theta)$ $A(\theta) = 100\cos\theta\sin\theta$ $= 50 \times 2\cos\theta\sin\theta$ $= 50(\sin 2\theta)$	Scale 10C (0, 4, 8, 10) Low Partial Credit: xy $(10 \cos \theta) \times (10 \sin \theta)$ High Partial Credit: $100 \cos \theta \sin \theta$
(a) (iii)	$A(\theta) = 50 \sin 2\theta$ $A'(\theta) = 50 \cos 2\theta \times 2$ $A'(\theta) = 100 \cos 2\theta = 0$ $\cos 2\theta = 0$ $2\theta = \frac{\pi}{2}$ $\theta = \frac{\pi}{4}$ $2x = 2\left(5\cos\left(\frac{\pi}{4}\right)\right) = 5\sqrt{2}$ $2y = 2\left(5\sin\left(\frac{\pi}{4}\right)\right) = 5\sqrt{2}$ $\Rightarrow \text{ Square}$	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: $a'(\theta)$ States $\frac{dy}{dx} = 0$ Mid Partial Credit: Correct differentiation High Partial Credit: Value of θ at maximum found Value of x or y at maximum fully substituted No Credit: No differentiation
(a) (iv)	Max area = $5\sqrt{2} \times 5\sqrt{2}$ = 50 Square units Or Max area = $50(\sin 2\theta)$ $50(\sin \frac{\pi}{2})$ = 50 Square units	Scale 5C (0, 3, 4, 5) Low Partial Credit: xy length \times width $50(\sin 2\theta)$ High Partial Credit: Area formula fully substituted

(b)		
	$\frac{dx}{dt} - \frac{dx}{dt} \cdot \frac{dl}{dt}$	Scale 10D (0, 3, 5, 8, 10)
	$\overline{dt} = \overline{dl} \cdot \overline{dt}$	Low Partial Credit:
	$\frac{2}{5} = \frac{x}{l+x}$ $2l + 2x = 5x$	$\frac{dx}{dt} \text{ or } \frac{dx}{dl} \text{ or } \frac{dl}{dt} \text{ given}$ Reference to similar triangles $\frac{2}{5} \text{ or } \frac{5}{2}$
	$x = \frac{2}{3}l$	Mid Partial Credit:
		$\frac{dx}{dt} = \frac{dx}{dl} \cdot \frac{dl}{dt}$ or equivalent with one
	$\frac{dx}{dl} = \frac{2}{3}$	relevant substitution
		$x = \frac{2}{3}l$
	$\frac{dx}{dt} = \frac{2}{3} \times \frac{3}{2}$	
	at 3 2	High Partial Credit:
	$\frac{dx}{dt} = 1$ m/sec	$\frac{dx}{dl}$ and $\frac{dl}{dt}$ found