A rectangle is inscribed in a circle of radius 5 units and centre $O(0,0)$ as shown below.
Let $R(x, y)$, where $x, y \in \mathbb{R}$, be the vertex of the rectangle in the first quadrant as shown.
Let θ be the angle between $[O R]$ and the positive x-axis, where $0 \leq \theta \leq \frac{\pi}{2}$.

(a) (i) The point $R(x, y)$ can be written as $(a \cos \theta, b \sin \theta)$, where $a, b \in \mathbb{R}$. Find the value of a and the value of b.
(ii) Show that $A(\theta)$, the area of the rectangle, measured in square units, can be written as $A(\theta)=50 \sin 2 \theta$.
(iii) Use calculus to show that the rectangle with maximum area is a square.
(iv) Find this maximum area.
(b) A person who is 2 m tall is walking towards a streetlight of height 5 m at a speed of $1.5 \mathrm{~m} / \mathrm{s}$. Find the rate, in m / s, at which the length of the person's shadow (x), cast by the streetlight, is changing.

Q8	Model Solution - 45 Marks	Marking Notes
(a) (i)	$\begin{array}{rl} \cos \theta=\frac{x}{5} & \sin \theta=\frac{y}{5} \\ 5 \cos \theta=x & 5 \sin \theta=y \\ (x, y)= & (5 \cos \theta, 5 \sin \theta) \\ \therefore a=5, \quad b=5 \end{array}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: $\cos \theta=\frac{x}{5}$ or equivalent High Partial Credit: a or b found Correct answer without work
(a) (ii)	$\begin{gathered} A(\theta)=(10 \cos \theta) \times(10 \sin \theta) \\ A(\theta)=100 \cos \theta \sin \theta \\ =50 \times 2 \cos \theta \sin \theta \\ =50(\sin 2 \theta) \end{gathered}$	Scale 10C (0, 4, 8, 10) Low Partial Credit: $\begin{aligned} & x y \\ & (10 \cos \theta) \times(10 \sin \theta) \end{aligned}$ High Partial Credit: $100 \cos \theta \sin \theta$
(a) (iii)	$\begin{gathered} A(\theta)=50 \sin 2 \theta \\ A^{\prime}(\theta)=50 \cos 2 \theta \times 2 \\ A^{\prime}(\theta)=100 \cos 2 \theta=0 \\ \cos 2 \theta=0 \\ 2 \theta=\frac{\pi}{2} \\ \theta=\frac{\pi}{4} \\ 2 x=2\left(5 \cos \left(\frac{\pi}{4}\right)\right)=5 \sqrt{2} \\ 2 y=2\left(5 \sin \left(\frac{\pi}{4}\right)\right)=5 \sqrt{2} \\ \Rightarrow \text { Square } \end{gathered}$	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: $a^{\prime}(\theta)$ States $\frac{d y}{d x}=0$ Mid Partial Credit: Correct differentiation High Partial Credit: Value of θ at maximum found Value of x or y at maximum fully substituted No Credit: No differentiation
(a) (iv)		Scale 5C (0, 3, 4, 5) Low Partial Credit: xy length \times width $50(\sin 2 \theta)$ High Partial Credit: Area formula fully substituted

(b)	$\frac{d x}{d t}=\frac{d x}{d l} \cdot \frac{d l}{d t}$ $\frac{2}{5}=\frac{x}{l+x}$ $2 l+2 x=5 x$	Scale 10D $(\mathbf{0}, \mathbf{3}, \mathbf{5}, \mathbf{8}, \mathbf{1 0})$ Low Partial Credit: $\frac{d x}{d t}$ or $\frac{d x}{d l}$ or $\frac{d l}{d t}$ given $x=\frac{2}{3} l$ Reference to similar triangles $\frac{2}{5}$ or $\frac{5}{2}$ $\frac{d x}{d l}=\frac{2}{3}$ $\frac{d x}{d t}=\frac{2}{3} \times \frac{3}{2}$
Mid Partial Credit: $\frac{d x}{d t}=\frac{d x}{d l} \cdot \frac{d l}{d t}$ or equivalent with one relevant substitution $x=\frac{2}{3} l$ $\frac{d x}{d t}=1 \mathrm{~m} / \mathrm{sec}$	High Partial Credit: $\frac{d x}{d l}$ and $\frac{d l}{d t}$ found	

