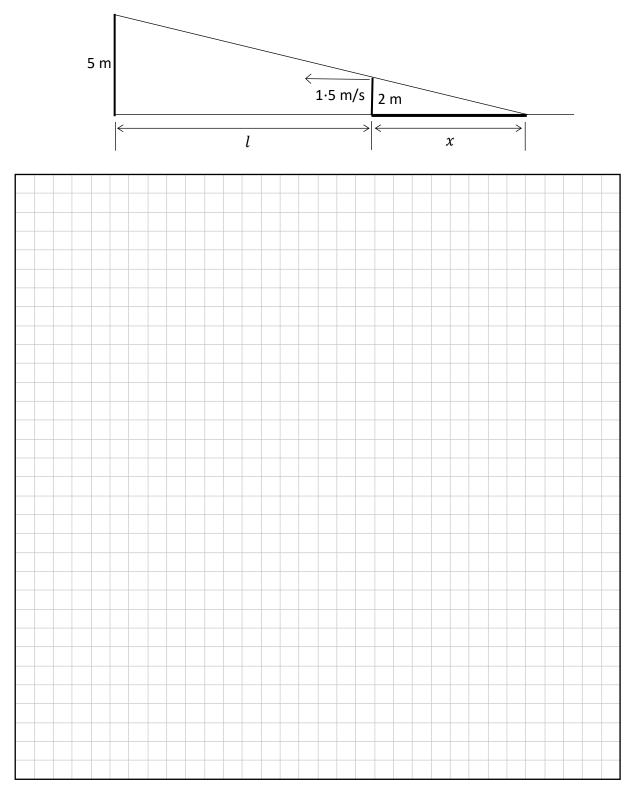

Question 8

A rectangle is inscribed in a circle of radius 5 units and centre O(0,0) as shown below. Let R(x, y), where $x, y \in \mathbb{R}$, be the vertex of the rectangle in the first quadrant as shown. Let θ be the angle between [OR] and the positive x-axis, where $0 \le \theta \le \frac{\pi}{2}$.

(a) (i) The point R(x, y) can be written as $(a \cos \theta, b \sin \theta)$, where $a, b \in \mathbb{R}$. Find the value of a and the value of b.

(ii) Show that $A(\theta)$, the area of the rectangle, measured in square units, can be written as $A(\theta) = 50 \sin 2\theta$.


(iii) Use calculus to show that the rectangle with maximum area is a square.

(iv) Find this maximum area.

															٦

This question continues on the next page.

(b) A person who is 2 m tall is walking towards a streetlight of height 5 m at a speed of 1.5 m/s. Find the rate, in m/s, at which the length of the person's shadow (x), cast by the streetlight, is changing.

