Question 1

(a) The coordinates of three points are $A(2,-6), B(6,-12)$, and $C(-4,3)$. Find the perpendicular distance from A to $B C$.

Based on your answer, what can you conclude about the relationship between the points A, B, and C ?
(b) The diagram below shows two lines a and b. The equation of a is $x-2 y+1=0$.

The acute angle between a and b is θ. Line b makes an angle of 60° with the positive sense of the x-axis, as shown in the diagram.
Find the value of θ, in degrees, correct to 3 decimal places.

Q1	Model Solution - 25 Marks	Marking Notes
(a)	Slope of $B C m=\frac{3+12}{-4-6}=-\frac{3}{2}$ Equation $B C \quad 3 x+2 y+6=0$. Perp. Distance from A to line $B C$ $\frac{3(2)+2(-6)+6}{\sqrt{3^{2}+2^{2}}}=\frac{6-12+6}{\sqrt{13}}=\frac{0}{\sqrt{13}}=0 .$ Therefore A, B and C are collinear.	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: Slope formula with some substitution Equation of line formula with some substitution Effort at finding are of triangle $A B C$ Mid Partial Credit: Equation of $B C$ High Partial Credit: Perp. Distance formula with some substitution from relevant line Area of triangle $A B C=0$ but perp. distance not explicit Full credit (-1) Distance $=0$ but conclusion omitted Area of triangle $A B C=0$ and perp. dist. $=0$ but conclusion omitted

(b)	Slope of $a=\frac{1}{2}$ Slope of $b=\tan 60^{\circ}=\sqrt{3}$ $\begin{gathered} \tan \theta= \pm \frac{\sqrt{3}-\frac{1}{2}}{1+\frac{\sqrt{3}}{2}}= \pm \frac{2 \sqrt{3}-1}{2+\sqrt{3}} \\ = \pm \frac{(2 \sqrt{3}-1)(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})} \\ = \pm(-8+5 \sqrt{3}) \\ \theta=\tan ^{-1}(-8+5 \sqrt{3}) \\ \theta=33 \cdot 435^{\circ} \end{gathered}$ Or $\begin{gathered} \theta+\tan ^{-1} \frac{1}{2}+120^{\circ}=180^{\circ} \\ \theta+26.565^{\circ}+120^{\circ}=180^{\circ} \\ \theta=33.435^{\circ} \end{gathered}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Slope of $a=\frac{1}{2}$ Slope of $b=\tan 60^{\circ}$ Mid Partial Credit: Tan formula with some relevant substitution High Partial Credit: Tan formula fully substituted Full credit (-1) $\theta=+\tan ^{-1}(-8+5 \sqrt{3})$ Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Slope of $a=\frac{1}{2}$ 120° Mid Partial Credit: $\tan ^{-1} \frac{1}{2}+120^{\circ}$ High Partial Credit: $\theta+26 \cdot 565^{\circ}+120^{\circ}=180^{\circ}$ and fails to finish

