Question 2

(a) The circle c has equation $x^{2}+y^{2}-4 x+2 y-4=0$. The point A is the centre of the circle. The line l is a tangent to c at the point T, as shown in the diagram.
The point $B(5,8)$ is on l. Find $|B T|$.

(b) Two circles, c_{1} and c_{2}, have their centres on the x-axis. Each circle has a radius of 5 units. The point $(1,4)$ lies on each circle. Find the equation of c_{1} and the equation of c_{2}.

Q2	Model Solution - 25 Marks	Marking Notes
	Centre: $(2,-1)$ Radius: $\sqrt{2^{2}+(-1)^{2}+4}=3$ Distance from centre to $\mathrm{B}: \sqrt{90}$ Pythagoras: $\begin{gathered} \|B T\|^{2}=90-3^{2}=81 \\ \Rightarrow\|B T\|=9 \end{gathered}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Centre or radius Mid Partial Credit: $\sqrt{90}$ High Partial Credit: Pythagoras fully substituted (: $\left.\|B T\|^{2}\right)$
(b)	Centre ($-g, 0$). $\begin{aligned} & \text { Radius }=\sqrt{g^{2}+(0)^{2}-c}=5 \\ & \Rightarrow g^{2}-c=25 \quad \text { Equation (i) } \end{aligned}$ Equation is $x^{2}+y^{2}+2 g x+c=0$ Sub (1, 4): $\begin{aligned} & 1^{2}+4^{2}+2 g(1)+c=0 \\ & \Rightarrow 17+2 g+c=0 \quad \text { Equation (ii) } \end{aligned}$ Solve (i) and (ii) $\begin{aligned} 17+2 g+ & \left(g^{2}-25\right)=0 \\ \quad & \Rightarrow g^{2}+2 g-8=0 \end{aligned}$ Solve for g : $g=2 \text { and } g=-4$ Centres are $(-2,0)$ and $(4,0)$ Equations: $\begin{aligned} & (x+2)^{2}+y^{2}=25 \\ & \quad(x-4)^{2}+y^{2}=25 \end{aligned}$ Or	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: Centre $(-g, 0)$ or equivalent Some substitution of $(1,4)$ into general equation of circle Mid Partial Credit: 2 relevant equations in g and c High Partial Credit: Quadratic in $g\left(g^{2}+2 g-8=0\right.$ or equivalent)

