Question 2 (25 marks)

The circle c has equation $x^2 + y^2 - 4x + 2y - 4 = 0$. The point A is the centre of the circle. The line l is a tangent to c at the point T, as shown in the diagram. The point B(5,8) is on l. Find |BT|.

B(5,8)

(b) Two circles, c_1 and c_2 , have their centres on the x-axis. Each circle has a radius of 5 units. The point (1,4) lies on each circle. Find the equation of c_1 and the equation of c_2 .

Q2	Model Solution – 25 Marks	Marking Notes
(a)	Centre: $(2, -1)$ Radius: $\sqrt{2^2 + (-1)^2 + 4} = 3$ Distance from centre to B: $\sqrt{90}$ Pythagoras: $ BT ^2 = 90 - 3^2 = 81$ $\Rightarrow BT = 9$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: Centre or radius Mid Partial Credit: $\sqrt{90}$ High Partial Credit: Pythagoras fully substituted (: $ BT ^2$)
(b)	Centre $(-g,0)$. Radius = $\sqrt{g^2 + (0)^2 - c} = 5$ $\Rightarrow g^2 - c = 25$ Equation (i) Equation is $x^2 + y^2 + 2gx + c = 0$ Sub (1, 4): $1^2 + 4^2 + 2g(1) + c = 0$ $\Rightarrow 17 + 2g + c = 0$ Equation (ii) Solve (i) and (ii) $17 + 2g + (g^2 - 25) = 0$ $\Rightarrow g^2 + 2g - 8 = 0$ Solve for g: $g = 2$ and $g = -4$ Centres are $(-2,0)$ and $(4,0)$ Equations: $(x + 2)^2 + y^2 = 25$, $(x - 4)^2 + y^2 = 25$ Or	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit: Centre (- g, 0) or equivalent Some substitution of (1, 4) into general equation of circle Mid Partial Credit: 2 relevant equations in g and c High Partial Credit: Quadratic in g (g² + 2g - 8 = 0 or equivalent)

Centre:
$$(-g,0)$$

$$\sqrt{(1+g)^2 + (4-0)^2} = 5$$
$$(1+g)^2 = 9$$
$$1+g = \pm 3$$

$$g = -4 \text{ or } g = 2$$

Equations:

$$(x + 2)^2 + y^2 = 25,$$

 $(x - 4)^2 + y^2 = 25$

or

Centres (-2,0) and (4,0); radius =5

Equations:

$$(x + 2)^2 + y^2 = 25,$$

 $(x - 4)^2 + y^2 = 25$

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

Centre (-g,0) or equivalent Some substitution into distance formula

Mid Partial Credit:

Distance formula fully substituted

High Partial Credit:

Quadratic in g

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit:

Diagram with (1, 0) identified

Mid Partial Credit:

-2 or 4 identified

High Partial Credit:

g = -4 and g = 2