Question 3

(a) A flagpole [GH], shown in the diagram, is vertical and the ground is inclined at an angle of 5° to the horizontal between E and G. The angles of elevation from E and F to the top of the pole are 35° and 52° respectively. The distance from E to F along the incline is 6 m .

Find how $\mathrm{far} F$ is from the base of the pole (G) along the incline. Give your answer correct to two decimal places.

(b) In the diagram the large circle s has centre O and the small circle c has centre D. The circle c touches the circle s at the point C. $O A$ and $O B$ are tangents to c as shown.
The radius of c is r.
$|\angle B O A|=60^{\circ}$.
The ratio of the area of s to the area of c is $k: 1$.
Find the value of k.

Q3	Model Solution - 25 Marks	Marking Notes
	$\begin{gathered} \frac{6}{\sin 17^{\circ}}=\frac{\|H F\|}{\sin 35^{\circ}} \\ \|H F\|=\frac{6 \sin 35^{\circ}}{\sin 17^{\circ}}=11.77 \\ \frac{11.77}{\sin 95^{\circ}}=\frac{x}{\sin 33^{\circ}} \\ x=\frac{11.77\left(\sin 33^{\circ}\right)}{\sin 95^{\circ}} \\ x=6.43 \mathrm{~m} \end{gathered}$	Scale 15C (0, 5, 10, 15) Low Partial Credit: $\begin{aligned} & \|\angle F H E\|=17^{\circ} \\ & \|\angle G H F\|=33^{\circ} \end{aligned}$ Some relevant substitution into relevant formula High Partial Credit: $\|H F\|$ found and stops $\|H E\|=16 \cdot 17$ found and stops Incorrect value of $\|H F\|$ (or $\|H E\|$) used correctly to find x
(b)	$\begin{aligned} & \|\angle B O A\|=60^{\circ}=>\|\angle C O A\|=30^{\circ} \\ & \sin \angle C O A=\frac{r}{D O}=\frac{1}{2} \\ & \Rightarrow\|D O\|=2 r \\ & \Rightarrow\|O C\|=3 r \\ & \text { Area } c=\pi r^{2} \\ & \text { Area } s=\pi(3 r)^{2}=9 \pi r^{2} \end{aligned}$ Area $s:$ Area $c=9: 1 \Rightarrow k=9$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: 30° Area $c=\pi r^{2}$ Mid Partial Credit: $\|D O\|=2 r$ High Partial Credit: $\|O C\|=3 r$

