Question 5 (25 marks)

- Two events A and B are such that $P(A) = \frac{3}{4}$ and $P(A \cap B) = \frac{1}{2}$.
 - Find P(B|A). Give your answer as a fraction in its simplest form. (i)
 - $P(A \cup B) = \frac{11}{12}$. Investigate if the events A and B are independent. (ii)
- (b) A spinner consists of 4 segments, as shown. Each segment is equally likely to be landed on. Liam, Sorcha and Lee play a game in which the spinner is spun twice and the numbers landed on are added together. The result is divided by 3 and the remainder is recorded.

If the remainder is 0 then Liam wins the game.

Q5	Model Solution – 25 Marks	Marking Notes
(a) (i)	$P(B A) = \frac{P(A \cap B)}{P(A)}$ $P(B A) = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3}$	Scale 15C (0, 5, 10, 15) Low Partial Credit: Formula for $P(B A)$ High Partial Credit: Formula fully substituted
(a) (ii)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{11}{12} = \frac{3}{4} + P(B) - \frac{1}{2}$ $\frac{11}{12} - \frac{1}{4} = P(B) = \frac{2}{3}$ Check if: $P(A) \times P(B) = P(A \cap B)$ $\frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{1}{2} = P(A \cap B)$ $\Rightarrow \text{Independent}$ or $P(B A) = P(B)$ $\frac{2}{3} = \frac{2}{3}$ $\Rightarrow \text{Independent}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: Condition for independent events High Partial Credit: $P(B) = \frac{2}{3}$ $P(A) \times P(B) = P(A \cap B) \text{ fully checked for any relevant value (< 1) of } P(B) \text{ with a valid conclusion}$

(b)

Add	1	1	2	3
1	2	2	3	4
1	2	2	3	4
2	3	3	4	5
3	4	4	5	6

Rem.	1	1	2	3
1	2	2	0	1
1	2	2	0	1
2	0	0	1	2
3	1	1	2	0

Lee has 6 chances to win.
The others only have 5 chances

⇒ It is not a fair game

Scale 5C (0, 3, 4, 5)

Low Partial Credit:

Any relevant listing of remainders/sums

High Partial Credit:

All remainders listed but no conclusion or incorrect conclusion or unsound conclusion