## Question 5

(a) Two events $A$ and $B$ are such that $P(A)=\frac{3}{4}$ and $P(A \cap B)=\frac{1}{2}$.
(i) Find $P(B \mid A)$. Give your answer as a fraction in its simplest form.
(ii) $\quad P(A \cup B)=\frac{11}{12}$. Investigate if the events $A$ and $B$ are independent.
(b) A spinner consists of 4 segments, as shown. Each segment is equally likely to be landed on. Liam, Sorcha and Lee play a game in which the spinner is spun twice and the numbers landed on are added together. The result is divided by 3 and the remainder is recorded.

If the remainder is 0 then Liam wins the game.
If the remainder is 1 then Sorcha wins the game.
If the remainder is 2 then Lee wins the game.
Is this a fair game? (i.e. Are all 3 participants equally likely to win?) Justify your answer by relevant calculations.

| Q5 | Model Solution - 25 Marks | Marking Notes |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$ | $\begin{array}{r} P(B \mid A)=\frac{P(A \cap B)}{P(A)} \\ P(B \mid A)=\frac{\frac{1}{3}}{\frac{3}{4}}=\frac{2}{3} \end{array}$ | Scale 15C (0, 5, 10, 15) <br> Low Partial Credit: <br> Formula for $P(B \mid A)$ <br> High Partial Credit: <br> Formula fully substituted |
| (a) (ii) |  | Scale 5C (0, 3, 4, 5) <br> Low Partial Credit: <br> Condition for independent events <br> High Partial Credit: $P(B)=\frac{2}{3}$ <br> $P(A) \times P(B)=P(A \cap B)$ fully checked for any relevant value $(<1)$ of $P(B)$ with a valid conclusion |



