Example 1

Tet6

ALGEBRAI

P.7

The length of a rectangle is (2x + 3) cm. If the area of the rectangle is given by the polynomial function $A(x) = 2x^2 + 7x + 6$, find

- (a) an expression for the width of the rectangle
- (b) an expression for the perimeter, P(x), of the same rectangle
- (c) the minimum value of x.

(a)
$$2x^2 + 7x + 6$$

 $(2x+3)(x+2)$
width = $x+2$

(c)
$$x+2 > 0$$
 $2x + 3 > 0$ $2x > -3$ $x > -1.5$

Example 2

Given $f(x) = 3x^3 - 4x^2 - 3x + 4$ and $g(x) = 5x^3 + 14x^2 + 7x - 2$, find

- (a) 2f(x) g(x) and state its degree
- (b) f(x) + 2g(x) and state its degree.

(a)
$$6x^3 - 8x^2 - 6x + 8 - 5x^3 - 14x^2 - 7x + 2$$

= $x^3 - 22x^2 - 13x + 10$ Degree = 3

(b)
$$3x^3 - 4x^2 - 3x + 4$$

+ $10x^3 + 18x^2 + 14x - 4$
 $13x^3 + 24x^2 + 11x$

- 2. The area of a rectangle, A(x), is $6x^2 + 4x 2$. If the length is given by (3x - 1), find
 - (i) an expression for the width of the rectangle
 - (ii) an expression for the perimeter, P(x), of the rectangle.

(i)
$$6x^2 + 4x - 2$$

 $(3x - 1)(2x + 2)$
width = $2x + 2$

(ii)
$$\rho = 2(3x-1) = 6x-2 + 2(2x+2) = 4x+4$$

- 3. The dimensions (in cm) of an open rectangular box are given in the diagram. Find
 - (a) an expression for the volume, V(x), of the box
 - (b) an expression for the external surface area, S(x), of the box
 - (c) the value of
 - (i) V(x) and (ii) S(x) when x = 5.

- **10.** Given $f(x) = x^2 3x + 6$, find
- (i) f(-2t) (ii) $f(t^2)$ (iii) f(t-2)

State the degree of each of the polynomial functions in t.

- **12.** If f(x) = 3x + 6, find f(10).
 - If f(x) = 2x + 8, find f(10).

By studying the pattern of the results above, if g(10) = 47, write g(x) in the form ax + b.