

Section 7.8 Exponential functions

$$f(x) = Aa^x$$

Text & Tests 6

Example 1

A bacterial colony doubles every hour. If 10 bacteria cells were present at the start of an experiment, (i) complete the following table (ii) draw a graph of the number of bacteria present up to 5 hours.

F20, 60 12						\bigcirc		
×	Time in hours	0 m		2	3	4	5	6
4	Number of bacteria	10	20	40	80	160	320	640

- (iii) By how many would the population increase in the 6th hour?
- (iv) What percentage increase in the population occurred in the 6th hour by comparison to the first hour?
- (v) Write an expression for the size of the population (N) after t hours.

$$f(0) = 10$$

$$f(1) = 20 = 10(2)$$

$$f(2) = 40 = 10(2^{2})$$

$$f(t) = 10(2^{2})$$

Example 2

The graphs of two exponential functions $y = Aa^x$ are given in this diagram. Find the values of A and a for each graph.

Red Curve

$$(0,4) \Rightarrow 4 = Aa^{\circ} = 4 = A$$

$$(1,2) \Rightarrow 2 = Aa^{1}$$

 $2 = (4)a$
 $\Rightarrow a = \frac{2}{4} = \frac{1}{2}$

Blue cueve:
$$(0,1) \Rightarrow 1 = Aa^{\circ} \Rightarrow A = 1$$

 $(1,2) \Rightarrow 2 = Aa' \Rightarrow 2 = (1)a \Rightarrow 2 = q$