Algebra	Special Factors $(x^2 - y^2) = (x - y)(x + y)$ $(x^3 - y^3) = (x - y)(x^2 + xy + y^2)$ $(x^3 + y^3) = (x + y)(x^2 - xy + y^2)$	Special Expansions $(x + y)^{2} = x^{2} + 2xy + y^{2}$ $(x - y)^{2} = x^{2} - 2xy + y^{2}$ $(x + y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$ $(x - y)^{3} = x^{3} - 3x^{2}y + 3xy^{2} - y^{3}$	
Properties of Surds: 1. $\sqrt{ab} = \sqrt{a}\sqrt{b}$ 2. $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ 3. $\sqrt{a}\sqrt{a} = a$	Rationalise Denominator $-10 + 6\sqrt{3}$ $1 + \sqrt{3}$ $= \frac{-10 + 6\sqrt{5}}{1 + \sqrt{3}} \times \frac{1 - \sqrt{3}}{1 - \sqrt{3}}$	Forming a Quadratic Equation $x^{2} - (sum \ of \ the \ roots)x + (product \ of \ the \ roots) = 0$ Sum and Product of the Roots of a Quadratic The quadratic equation $ax^{2} + bx + c = 0$ can be written $x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$ If α and β are the roots of $x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$, then: $\alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$ Useful α and β identity $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$	
Laws of Indices Properties of Indices 1. $a^m a^n = a^{m+n}$ 2. $\frac{a^m}{a^n} = a^{m-n}$ 3. $(a^m)^n = a^{m+n}$ 4. $(ab)^n = a^n b^n$ 5. $a^{-n} = \frac{1}{a^n}$ 6. $a^{\frac{1}{n}} = \sqrt[n]{a}$ 7. $a^0 = 1$	Dividing Fractions $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$		
	Solving Quadratics $f(x) = 2x^{2} - 4x - 6$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$	Nature of roots $(k-1)x^2 - 6x + (k-1)$ has equal roots, find k.Real $b^2 - 4ac \ge 0$ Equal $b^2 - 4ac = 0$ No Real Roots $b^2 - 4ac < 0$	
Laws of Logs $\log_a m + \log_a n = \log_a mn$ $\log_a m - \log_a n = \log_a \frac{m}{n}$ $n\log_a m = \log_a m^n$ $\log_n m = \frac{\log_a m}{\log_a n}$	The Unknown in the Power (Easy) $2^{x} = 8$ Use Logs $\longrightarrow \log_{2} 8 = x$ (Hard) $2^{x} - 6 + 2^{3-x} = 0$	Solving Cubics Solve $f(x) = 4x^3 + 10x^2 - 7x - 3$ <i>We must guess</i> 1 st root (if not given) by subbing in for x. It will be factor of 3 <i>Then if</i> $x = -3$ <i>is a root</i> $x + 3$ <i>is a factor and can be used in long division to</i> <i>solve.</i>	
Log Equations $log_2(5x + 1) = 2 log_2(x + 1)$ Apply above rules to solve	<i>Let</i> $y = 2^x$ <i>and try make quadratic.</i>	Using Factor Theorem $x - 1$ and $x - 2$ are factors of $f(x) = ax^3 + bx^2 + x + 2$. Find a and b If $x - 1$ is a factor then $x = 1$ is a root and we can sub this into equation.	

Identities/ Unknown Co-efficients $(x + a)^2 - (x + b)^2 = 6x + 24$ <i>Remove all fractions or brackets. Equate like term</i>	ns on each side.	Simultaneous Equations – 2 unknowns (linear)Solve $2x + 8y = 10$ $2x - 3y = -1$ Multiply one or both lines to make co-efficients of one of the variables the	
Irrational Equations $x - \sqrt{2x - 4} = 2$		<i>same. Cancel down and solve. Occurs in co-ordinate geometry to find where lines intersect</i>	
<i>Isolate the surd. Square both sides and solve. May Always test solution.</i>	<i>have to repeat.</i>	Simultaneous Equations – 3 unknowns Solve $2x + 8y - 3z = -1$ 2x - 3y + 2z = 2 2x + y + z = 5	
$\begin{array}{ l l l l l l l l l l l l l l l l l l l$	If $ x = 4$		
Isolate the modulus and then square both sides	then $x = 4$ or $x = -4$	We take equations in pairs and elim	ninate one variable.
Rational Inequalities $\frac{3x+1}{x+1} \le 1$		Simultaneous Equations – 2 unknowns (linear & non-linear) Solve $2x + y = 10$ $x^2 + y^2 - 4x - 2y = 0$	
Cannot cross multiply as $x + 1$ may be negative. N $(x + 1)^2$. Solve the quadratic to get critical values. If \leq then it's between values. If \geq then it's outside	<i>Aultiply each side by</i> e values.	<i>Take the linear expression and express one variable in terms of the other.</i> <i>Sub this into the non-linear and solve.</i>	
Abstract Inequalities		<i>Uccurs in co-ordinate geometry where a line intersects a circle</i>	
Show that $a^2 + b^2 \ge 2ab$		Substitution	Manipulate Formulae
<i>Any real number squared is non-negative. Bring to one side and factorise to make something</i>	g squared.	$\frac{q^2 + rp + r + 4}{\underline{-q}}$	Express <i>a</i> in terms of <i>u</i> , <i>t</i> and <i>s</i> 1
Fractions Show that $\frac{5}{x-2} + \frac{26-7x}{2-x}$ reduces to a constant		For $p = 3$, $q = -4$ and $r = 7$	$s = ut + \frac{1}{2}at^{2}$ <i>Get rid of brackets and fractions.</i>
Find a common denominator.		Sub in values for p, q and r	Isolate letter of choice.