

Surds

Properties of Surds:

1. $\sqrt{a b}=\sqrt{a} \sqrt{b}$
2. $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
3. $\sqrt{a} \sqrt{a}=a$

Laws of Indices

Properties of Indices

1. $a^{m} \cdot a^{n}=a^{m+n}$
2. $\frac{a^{m}}{a^{n}}=a^{m-n}$
3. $\left(a^{m}\right)^{n}=a^{m+n}$
4. $(a b)^{n}=a^{n} b^{n}$
5. $a^{-n}=\frac{1}{a^{n}}$
6. $a^{\frac{1}{n}}=\sqrt[n]{a}$
7. $a^{0}=1$

Laws of Logs

$\log _{a} m+\log _{a} n=\log _{a} m n$
$\log _{a} m-\log _{a} n=\log _{a} \frac{m}{n}$
$\operatorname{nlog}_{a} m=\log _{a} m^{n}$
$\log _{n} m=\frac{\log _{a} m}{\log _{a} n}$

Log Equations

$\log _{2}(5 x+1)=2 \log _{2}(x+1)$
Apply above rules to solve

Special Factors

$\left(x^{2}-y^{2}\right)=(x-y)(x+y)$
$\left(x^{3}-y^{3}\right)=(x-y)\left(x^{2}+x y+y^{2}\right)$

$$
\left(x^{3}+y^{3}\right)=(x+y)\left(x^{2}-x y+y^{2}\right)
$$

Rationalise Denominator

$\frac{-10+6 \sqrt{3}}{1+\sqrt{3}}$
$=\frac{-10+6 \sqrt{5}}{1+\sqrt{3}} \times \frac{1-\sqrt{3}}{1-\sqrt{3}}$

Dividing Fractions

$\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$

Solving Quadratics

$$
\begin{aligned}
& f(x)=2 x^{2}-4 x-6 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

The Unknown in the Power

(Easy) $\quad 2^{x}=8$
Use Logs $\longrightarrow \log _{2} 8=x$
(Hard) $\quad 2^{x}-6+2^{3-x}=0$
Lety $=2^{x}$ and try make quadratic.

$$
\begin{aligned}
& \text { Special Expansions } \\
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x-y)^{2}=x^{2}-2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x-y)^{3}=x^{3}-3 x^{2} y+3 x y^{2}-y^{3}
\end{aligned}
$$

Forming a Quadratic Equation

$$
x^{2}-(\text { sum of the roots }) x+(\text { product of the roots })=0
$$

Sum and Product of the Roots of a Quadratic

The quadratic equation $a x^{2}+b x+c=0$ can be written $x^{2}+\frac{b}{a} x+\frac{c}{a}=0$ If α and β are the roots of $x^{2}+\frac{b}{a} x+\frac{c}{a}=0$, then:
$\alpha+\beta=-\frac{b}{a} \quad$ and $\quad \alpha \beta=\frac{c}{a}$

Useful α and $\boldsymbol{\beta}$ identity

$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$

Nature of roots

$(k-1) x^{2}-6 x+(k-1)$ has equal roots, find k .

$$
\begin{array}{ll}
\text { Real } & b^{2}-4 a c \geq 0 \\
\text { Equal } & b^{2}-4 a c=0 \\
\text { No Real Roots } & b^{2}-4 a c<0
\end{array}
$$

Solving Cubics

$$
\text { Solve } f(x)=4 x^{3}+10 x^{2}-7 x-3
$$

We must guess $1^{\text {st }}$ root (if not given) by subbing in for x. It will be factor of 3 Then if $x=-3$ is a root $x+3$ is a factor and can be used in long division to solve.

Using Factor Theorem

$x-1$ and $x-2$ are factors of $f(x)=a x^{3}+b x^{2}+x+2$. Find a and b
If $x-1$ is a factor then $x=1$ is a root and we can sub this into equation.

Identities/ Unknown Co-efficients

$(x+a)^{2}-(x+b)^{2}=6 x+24$
Remove all fractions or brackets. Equate like terms on each side.

Irrational Equations

$x-\sqrt{2 x-4}=2$
Isolate the surd. Square both sides and solve. May have to repeat. Always test solution.

Modulus/ Absolute Value

$|x-2| \geq 3$
Isolate the modulus and then square both sides

$$
\text { If }|x|=4
$$

then $x=4$
or $x=-4$

Rational Inequalities

$\frac{3 x+1}{x+1} \leq 1$
Cannot cross multiply as $x+1$ may be negative. Multiply each side by $(x+1)^{2}$. Solve the quadratic to get critical values.
If \leq then it's between values. If \geq then it's outside values.

Abstract Inequalities

Show that $a^{2}+b^{2} \geq 2 a b$
Any real number squared is non-negative.
Bring to one side and factorise to make something squared.

Fractions

Show that $\frac{5}{x-2}+\frac{26-7 x}{2-x}$ reduces to a constant
Find a common denominator.

Simultaneous Equations - 2 unknowns (linear)

Solve $2 x+8 y=10$

$$
2 x-3 y=-1
$$

Multiply one or both lines to make co-efficients of one of the variables the same. Cancel down and solve.

Occurs in co-ordinate geometry to find where lines intersect

Simultaneous Equations - 3 unknowns

Solve $2 x+8 y-3 z=-1$

$$
\begin{aligned}
& 2 x-3 y+2 z=2 \\
& 2 x+y+z=5
\end{aligned}
$$

We take equations in pairs and eliminate one variable.

Simultaneous Equations - 2 unknowns (linear \& non-linear)

Solve $2 x+y=10$

$$
x^{2}+y^{2}-4 x-2 y=0
$$

Take the linear expression and express one variable in terms of the other. Sub this into the non-linear and solve.

Occurs in co-ordinate geometry where a line intersects a circle

Substitution

$$
\sqrt{\frac{q^{2}+r p+r+4}{\frac{-q}{p}}}
$$

For $p=3, q=-4$ and $r=7$
Sub in values for p, q and r

Manipulate Formulae

Express a in terms of u, t and s

$$
s=u t+\frac{1}{2} a t^{2}
$$

Get rid of brackets and fractions.
Isolate letter of choice.

