Leaving Cert

Higher Level **Project Maths**

Differentiation

Find the derivative of: (i) $y = 2x^5 + x^3$ (ii) $y = \frac{1}{x^4}$ (with respect to x)

If
$$f(x) = 8 + x^2 - \frac{1}{x}$$
 Find $f'(x)$

Find the derivative of
$$y = \frac{1}{2+5x}$$
 (with respect to x)

Find the derivative of
$$y = \cos^4 x$$

(with respect to x)

Find the derivative of
$$y = \sin^{-1} \frac{x}{5}$$
 (with respect to x)

Find the derivative of $y = 2x - \sin 2x$

(with respect to x)

Find the derivative of
$$y = \ln(x^2 + 1)$$

(with respect to x)

Find the derivative of
$$y = \left(\frac{3+x}{\sqrt{9-x^2}}\right)$$
 (with respect to x)

Find the derivative of
$$y = \sin^{-1} \left(\frac{x}{\sqrt{1 + x^2}} \right)$$
 (with respect to x)

If $y = \sin x \cos x$ find the slope of the curve when $x = \frac{\pi}{2}$

If
$$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
 Show $\frac{dy}{dx} = \frac{4}{(e^{x} + e^{-x})^{2}}$

Quotient rule
$$y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^{2}}$$

$$u = e^{x} - e^{-x}$$

$$du = e^{x} + e^{-x}$$

$$du = e^{x} + e^{-x}$$

$$dv = e^{x} - e^{x} - e^{-x}$$

$$dv = e^{x} - e^{x} - e^{x}$$

$$dv =$$

If
$$f(x) = 3 \cos(2x+5)$$
, Show that $f''(x) + 4 f(x) = 0$
Chain Rule
$$f'(x) = 3[-\sin(2x+5)](2)$$

$$= -6 \sin(2x+5)$$
Sin X Cosx
$$f''(x) = -6[\cos(2x+5)](2)$$
Cosx
$$= -12 \cos(2x+5)$$

$$= -12 \cos(2x+5) + 4[3 \cos(2x+5)]$$

$$= -12 \cos(2x+5) + 4[3 \cos(2x+5)]$$

$$= 0$$
dep

Find the slope of the tangent to the circle $x^2 + y^2 = 25$ at the point (3,-4).

