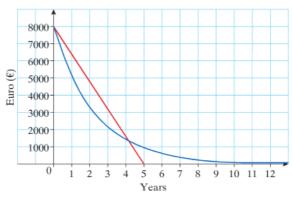
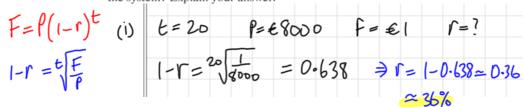
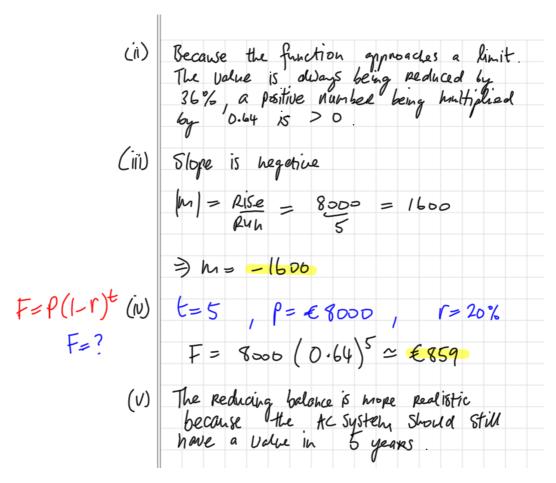
4. A company buys a machine costing €140 000.

In order to facilitate its replacement, the company invests €25 000 in a bank offering a return of 3.5% per annum compound interest.


If the machine depreciates at a rate of 20% per annum, find

- (a) (i) the value of the machine in 4 years time
 - (ii) the value of their savings investment in 4 years time.
- (b) If inflation over the 4 years averages 2% per annum, find
 - (i) the cost of buying a new machine in 4 years time
 - (ii) how much money the company will need to add to their savings in order to replace the machine, taking the second-hand value of the machine in 4 years time into account.


(Note: Inflation is a rise in the *general level of prices* of goods and services in an economy.)



10. An air-conditioning system cost €8000. A straight line depreciation and a reducing balance curve for this system are shown below.

- (i) Using the graph, estimate the rate of depreciation.(Let the value after 20 years be €1.)
- (ii) Explain why the reducing balance curve can never have a zero value.
- (iii) Find the slope of the straight line representing depreciation.
- (iv) Estimate the point of intersection of the two graphs.
- (v) After 5 years, what is the value of the system on a reducing balance basis?
- (iv) In your opinion, which method of depreciation gives a more realistic value for the system? Explain your answer.

Section 5.3 In this example we sum a geometric series.

Example 1

Catríona saves €400 every three months for five years at an effective quarterly rate of 0.9%.

- (i) Represent her savings by a geometric series
- (ii) Find the value of her investment at the end of the period.

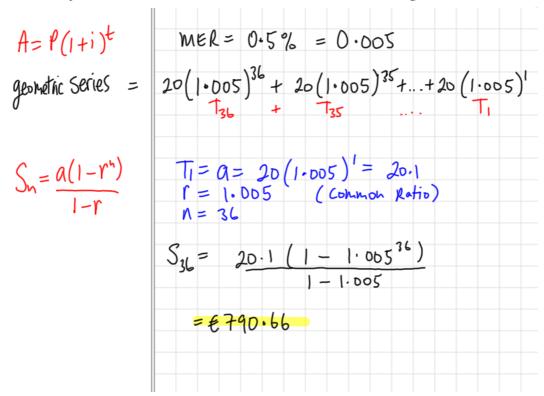
$$i = 0.9\% = 0.009$$

5 years = (5 × 4) quarters = 20 payments

(i) Catríona's savings are represented by $400(1.009) + 400(1.009)^2 + 400(1.009)^3 + \dots 400(1.009)^{20}$

(ii)
$$a = 400(1.009)$$

 $r = (1+i) = 1.009$
 $n = 20$


$$S_n = \frac{a(1-r^n)}{(1-r)}$$

$$S_n = \frac{400(1.009)[1-(1.009)^{20}]}{1-1.009}$$

$$= \text{€}8800.89$$
 $a = \text{first term}$

Exercise 5.3

1. Calculate the future value of 36 monthly instalments of €20.00 at an interest rate of 0.5% per month. What is the total interest earned on these savings?

- 2. Marie has saved €30.00 per month since her 18th birthday.

 If her bank has guaranteed her an interest rate of 4% per annum, find
 - (i) the equivalent monthly rate of interest, correct to two places of decimals
 - (ii) the value of her savings on her 21st birthday.