Integration **Anti-Differentiation**

Tutorial Questions

eMaths.ie

Integration

Constants of integration omitted.

Constants of integration offitted.			
f(x)	$\int f(x)dx$		
$x^n, (n \neq -1)$	$\frac{x^{n+1}}{n+1}$		
$\frac{1}{x}$	$\ln x $		
e^x	e^x		
e^{ax}	$\frac{1}{a}e^{ax}$		
$a^x (a>0)$	$\frac{a^x}{\ln a}$		
$\cos x$	$\sin x$		
$\sin x$	$-\cos x$		
tan x	$\ln \sec x $		
$\frac{1}{\sqrt{a^2-x^2}} (a>0)$	$\sin^{-1}\frac{x}{a}$		
$\frac{1}{x^2 + a^2} (a > 0)$	$\frac{1}{a}\tan^{-1}\frac{x}{a}$		

Example 1

Find (i)
$$\int (3x^2 + 4x + 5) dx$$
 (ii) $\int (2x - 1)^2 dx$.

(ii)
$$\int (2x-1)^2 dx$$
.

Find (i)
$$\int \frac{x^3 - 4x}{x} dx$$

Find (i)
$$\int \frac{x^3 - 4x}{x} dx$$
 (ii) $\int \left(x^3 + \frac{1}{x^2} + \sqrt{x}\right) dx$ (iii) $\int \sqrt{x}(x+4) dx$

(iii)
$$\int \sqrt{x}(x+4) \, \mathrm{d}x$$

Example 3

A curve with equation y = f(x) passes through the point (2,0).

If
$$f'(x) = 3x^2 - \frac{1}{x^2}$$
, find $f(x)$.

Find the antiderivative of each of the following:

- (i) $\int e^{3x} dx$ (ii) $\int (e^{4x} + 6x) dx$ (iii) $\int (e^{5x} + 2) dx$ (iv) $\int (e^x + e^{-x}) dx$

Example 2

Given $y = 5^x$, use the rules of logarithms to find x in terms of y.

Hence, find (i) $\frac{dx}{dy}$ (ii) $\frac{dy}{dx}$.

(ii)
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$
.

Use the result from (ii) to show that $\int 5^x dx = \frac{5^x}{\ln 5} + c$.

Find (i) $\int \cos 4x \, dx$ (ii) $\int \sin 3x \, dx$.

Example 4

If $y = \sin 3x^2$, find $\frac{dy}{dx}$.

Let $h(x) = x \ln x$, $x \in R$, x > 0.

- (i) Find h'(x).
- (ii) Hence, find $\int \ln x \, dx$.

Example 1

A body moves in a straight line.

At time t seconds, its acceleration is given by a = 6t + 1.

When t = 0, the velocity of the body is 2 m/sec and its displacement from a fixed point O is 1 metre.

- (i) Find expressions for v and s in terms of t.
- (ii) Find the velocity of the body after 4 seconds.

(i)
$$\int_0^2 3x^2 \, dx$$

Evaluate (i)
$$\int_0^2 3x^2 dx$$
 (ii) $\int_2^4 (x^2 - x + 3) dx$ (iii) $\int_4^9 \frac{1}{\sqrt{x}} dx$

(iii)
$$\int_4^9 \frac{1}{\sqrt{x}} \, \mathrm{d}x$$

Example 2

Evaluate (i)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos 2x \, dx$$
 (ii) $\int_{2}^{5} 4e^{x} \, dx$ (iii) $\int_{0}^{2} 9^{x} \, dx$

(ii)
$$\int_{2}^{5} 4e^{x} dx$$

(iii)
$$\int_0^2 9^x dx$$

Find the area of the shaded region shown in the given diagram.

Example 2

Find the area of the region bounded by the curve $y = -x^2 + 5x - 4$ and the line y = x - 1.

The diagram on the right shows a sketch of the function $y = \frac{2}{x^2}$.

The shaded region represents the area bounded by the curve and the *x*-axis between the lines x = 3 and x = 1.

If the line x = k divides this area into two equal portions, find the value of k.

Example 1

The graph of the function, $f(x) = x^2 - 4x + 5$ is shown. Find the average value of the function for $1 \le x \le 4$.

A body starts from rest and moves in a straight line.

After t seconds its velocity (v) is given by $v = 2t - 4, t \ge 0$.

(i) By completing the table on the right, find the average velocity over the first 3 seconds.

t =	0	1	2	3
v =				

(ii) Use integration to test the accuracy of your answer.

Example 3

The average value of the function f(x) = 2x + 3 for $1 \le x \le k$ is 11. Find the value of k.

