Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2016

Marking Scheme

Mathematics

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Paper 1

Solutions and marking scheme 2
Structure of the marking scheme 3
Summary of mark allocations and scales to be applied 4
Model solutions and detailed marking notes 5
Paper 2
Solutions and marking scheme 23
Structure of the marking scheme 24
Summary of mark allocations and scales to be applied 25
Model solutions and detailed marking notes 26
Marcanna breise as ucht freagairt trí Ghaeilge 44

Blank Page

Leaving Certificate 2016

Model Solutions and Marking Scheme

Mathematics

Higher Level

Paper 1

Marking Scheme - Paper 1, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	B	C	D	E
No of categories	2	3	4	5	6
5 mark scales	0,5	$0,2,5$	$0,2,4,5$	$0,2,3,4,5$	
10 mark scales	0,10	$0,5,10$	$0,3,7,10$	$0,2,5,8,10$	
15 mark scales	0,15	$0,7,15$	$0,5,10,15$	$0,4,7,11,15$	
20 mark scales	0,20	$0,10,20$	$0,7,13,20$	$0,5,10,15,20$	
25 mark scales	0,25	$0,12,25$	$0,8,17,25$	$0,6,12,19,25$	$0,5,10,15,20,25$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

E-scales (six categories)

- response of no substantial merit
- response with some merit
- response almost half-right
- response more than half-right
- almost correct response
- correct response

In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Thus, for example, in scale 10C, 9 marks may be awarded. Throughout the scheme indicate by use of $*$ where an arithmetic error occurs.

Summary of mark allocations and scales to be applied

Section A

Question 1
(a)
(b)
5B
10C
(c)
10C

Question 2
(a)
(b)
10C
15C

Question 3

(a)(i)	5 C
(ii)	5 C
(iii)	5 B
(b)	10 C

Question 4

(a)	15 D
(b)(i)	5 C
(ii)	5 D

Question 5

(a)(i)	$10 D$
(ii)	$5 B$
(b)(i)	$5 B$
(ii)	$5 B$

Question 6
(a)
(b)(i)+(ii)
10D
15D

Section B

Question 7

(a)(i)	10 C
(a)(ii)	10 C
(b)(i)	10 C
(b)(ii)	10 C

Question 8
(a)(i) 10C
(a)(ii) 5B
(a)(iii) 5B
(a)(iv) 10D
(b)(i) 10D
(b)(ii) 5B
(b)(iii) 10C

Question 9
(a)(i) 10 C
(a)(ii) 10C
(a)(iii) 15D
(b)(i) 5B
(b) (ii) 10 C
(b)(iii) 5B

Model Solutions \& Marking Notes

Note: The model solutions for each question are not intended to be exhaustive - there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Q1	Model Solution - 25 Marks	Marking Notes
(a)	$-4-3 i$	Scale 5B (0, 2, 5) Partial Credit: - real or imaginary part correct
(b)	$\begin{aligned} & r=\sqrt{1^{2}+1^{2}}=\sqrt{2} \quad \theta=\frac{\pi}{4} \\ & (1+i)^{8}=\left\{\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right\}^{8} \\ & (1+i)^{8}=\{16(\cos 2 \pi+i \sin 2 \pi)\} \\ & (1+i)^{8}=16(1)=16 \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit: - correct answer without use of De Moivre's - modulus or argument correct - formula - statement of De Moivre's High Partial Credit: - $16(\cos 2 \pi+i \sin 2 \pi)$ Note: not De Moivre and incorrect answer merits 0 marks
(c)	$\begin{gathered} z=\frac{(2-i) \pm \sqrt{(-2+i)^{2}-4(3-i)}}{2} \\ =\frac{(2-i) \pm \sqrt{4-4 i-1-12+4 i}}{2} \\ =\frac{2-i \pm \sqrt{-9}}{2} \\ =\frac{2-i \pm 3 i}{2} \\ = \\ 1-2 i \text { or } 1+i \end{gathered}$ Or $\begin{aligned} & a x^{2}+b x+c=0 \\ & x^{2}-\left(\frac{-b}{a}\right) x+\frac{c}{a}=0 \end{aligned}$ Sum of roots $=-\frac{b}{a}$ $\begin{aligned} & 1+i+z_{1}=2-i \\ & z_{1}=1-2 i \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit: - root formula with some substitution High Partial Credit - formula fully substituted Or Scale 10C (0, 3, 7, 10) Low Partial Credit: - equation rearranged - $-\frac{b}{a}$ High Partial Credit - correct substitution

Q2	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{aligned} & x^{2}-8 x+16 \geq 4 \\ & x^{2}-8 x+12 \geq 0 \\ & (x-2)(x-6) \geq 0 \\ & x=2 \quad x=6 \\ & \quad\{x \mid x \leq 2\} \cup\{x \mid x \geq 6\} \end{aligned}$ Or $\begin{gathered} x-4 \geq 2 \cup x-4 \leq-2 \\ x \geq 6 \cup x \leq 2 \end{gathered}$ Or Graphical method (must indicate range on X-axis somehow) Or	Scale 10C (0, 3, 7, 10) Low Partial Credit: - either side squared - one correct linear inequality written - stating range of natural numbers only High Partial Credit: - correct solutions to quadratic Full Credit: - correct answer without work Note: use of natural numbers in range merits High Partial Credit at most Or Scale 10C (0, 3, 7, 10) Low Partial Credit: - any one straight line High Partial Credit: - three straight lines

(b)	$\begin{gathered} x=\frac{-3 y-1}{2} \\ \left(\frac{-3 y-1}{2}\right)^{2}+\left(\frac{-3 y-1}{2}\right)(y)+2 y^{2}=4 \\ 11 y^{2}+4 y-15=0 \\ (11 y+15)(y-1)=0 \\ y=\frac{-15}{11} \text { or } y=1 \\ x=\frac{-3\left(\frac{-15}{11}\right)-1}{2} \quad \text { or } x=\frac{-3(1)-1}{2} \\ x=\frac{17}{11} \text { or } x=-2 \\ \text { or } \\ y=\frac{-2 x-1}{3} \\ x^{2}+x\left(\frac{-2 x-1}{3}\right)+2\left(\frac{-2 x-1}{3}\right)^{2}=4 \\ 11 x^{2}+5 x-34=0 \\ (11 x-17)(x+2)=0 \\ x=\frac{17}{11} \quad \text { or } x=-2 \\ y=\frac{-15}{11} \text { or } y=1 \end{gathered}$	Scale 15C (0, 5, 10,15) Low Partial Credit: - effort to isolate x (or y) High Partial Credit: - fully correct substitution into quadratic

Q3	Model Solution - Continued	Marking Notes
(b)	$\begin{gathered} \frac{e^{x}-1}{1}=\frac{2}{e^{x}} \\ e^{2 x}-e^{x}=2 \\ \left(e^{x}\right)^{2}-e^{x}-2=0 \\ \left(e^{x}-2\right)\left(e^{x}+1\right)=0 \\ e^{x}=2 \text { or } e^{x}=-1 \\ x=\ln 2 \end{gathered}$ $\text { or } \quad x=0.693$ Or $\left(e^{x}\right)^{2}-e^{x}-2=0$ Let $y=e^{x} \Rightarrow y^{2}-y-2=0$ $\begin{gathered} y=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)} \\ =\frac{1 \pm \sqrt{1+8}}{2} \\ =\frac{1 \pm 3}{2} \\ \Rightarrow y=2 \text { or } y=-1 \text { (not possible) } \\ y=e^{x} \Rightarrow e^{x}=2 \\ x=\ln 2 \text { or } x=0.693 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - substitution correct High Partial Credit - correct factors of quadratic - root formula correctly substituted $e^{x}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}$ Note: oversimplification of equation (i.e. not treating as quadratic) merits Low Partial Credit at most Or Scale 10C (0, 3, 7, 10) Low Partial Credit - substitution correct High Partial Credit - root formula correctly substituted $y=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-2)}}{2(1)}$ Note: oversimplification of equation (i.e. not treating as quadratic) merits Low Partial Credit at most

Q4	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} P_{1}: 8^{1}-1=7 \text { (divisible by } 7 \text {) } \\ P_{k}: \text { Assume } 8^{k}-1 \text { is divisible by } 7 \\ 8^{k}-1=7 M \\ 8^{k}=7 M+1 \\ P_{k+1}: 8^{k+1}-1=8\left(8^{k}\right)-1 \\ =8(7 M+1)-1 \\ =56 M+7 \\ =7(8 M+1) \\ P_{k+1} \text { is divisible by } 7 \\ \\ P_{1} \text { is true } \quad \Rightarrow \quad P_{k+1} \text { is true } \end{gathered}$ So, $\quad P_{k+1}$ true whenever P_{k} true. Since P_{1} true, then, by induction, P_{n} is true for all natural numbers ≥ 1 Or $\begin{aligned} P_{k+1} & =8^{k+1}-1 \\ & =8.8^{k}-1 \\ & =(7+1) .8^{k}-1 \\ & =7\left(8^{k}\right)+\left(8^{k}-1\right) \end{aligned}$ So, P_{k+1} true whenever P_{k} true. Since P_{1} true, then, by induction, P_{n} is true for all natural numbers ≥ 1	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit - P_{1} step Mid Partial Credit - P_{k} step - P_{k+1} step High Partial Credit - use of P_{k} step to prove P_{k+1} step Note: accept P_{1} step, P_{k} step and P_{k+1} step in any order

(b) (i)	$\begin{gathered} p=\log _{\mathrm{a}} 2, \quad q=\log _{\mathrm{a}} 3 \\ \log _{a} \frac{8}{3}=\log _{a} 8-\log _{a} 3 \\ =\log _{a}(2)^{3}-\log _{a} 3 \\ =3 \log _{\mathrm{a}} 2-\log _{\mathrm{a}} 3 \\ =3 p-q \end{gathered}$	Scale 5C (0, 2, 4, 5) Iow Partial Credit - $\log _{a} 8-\log _{a} 3$ High Partial Credit - $\log _{a} 8=3 \log _{a} 2 \quad$ (and/or $=3 p$)
(ii)	$\begin{gathered} \log _{\mathrm{a}} \frac{9 a^{2}}{16}=\log _{\mathrm{a}}(3 a)^{2}-\log _{\mathrm{a}}(2)^{4} \\ =2 \log _{\mathrm{a}} 3+2 \log _{\mathrm{a}} a-4 \log _{\mathrm{a}} 2 \\ \quad=2 q+2(1)-4 p \\ \quad=2 q+2-4 p \end{gathered}$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit - $\log _{a} 9 a^{2}-\log _{a} 16$ Mid Partial Credit - $2 \log _{\mathrm{a}} 3$ - $2 \log _{a} a$ - $4 \log _{a} 2$ - $4 p$ or $2 q$ or 2 High Partial Credit - $2\left(\log _{a} 3+\log _{a} a\right)-4 \log _{a} 2$ or equivalent

Q5	Model Solution - 25 Marks	Marking Notes
(a) (i)	$\begin{gathered} (5 x-9)^{2}=(x-1)^{2}+(4 x)^{2} \\ 8 x^{2}-88 x+80=0 \\ x^{2}-11 x+10=0 \\ (x-1)(x-10)=0 \\ x=1 \text { or } x=10 \\ x=10 \end{gathered}$	Scale 10D (0, 2, 5, 8, 10) Low Partial Credit - any use of Pythagoras Mid Partial Credit - fully correct substitution High Partial Credit - both roots correct
(a) (ii)	Sides $=9,40,41$ $\begin{gathered} 9^{2}+40^{2}=41^{2} \\ 81+1600=1681 \\ 1681=1681 \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit - 9 or 40 or 41 - using 1 or -10 from candidates work
(b) (i)	Function is bijective if inverse exists $f^{-1}(x)=\frac{x+2}{3}$ \Rightarrow Function is injective. or Horizontal line test. or $\begin{gathered} f(a)=f(b) \\ 3 a-2=3 b-2 \\ \Rightarrow a=b \end{gathered}$ or $\forall a, b \in A, f(a)=f(b) \Rightarrow a=b$	Scale 5B (0, 2, 5) Partial Credit - $f^{-1}(x)$ written - $f(x)$ drawn - $f(a)=f(b)$
(b) (ii)	$\begin{aligned} f(x) & =3 x-2 \\ f^{-1}(x) & =\frac{x+2}{3} \end{aligned}$	Scale 5B (0, 2, 5) Partial Credit - any relevant transpose

Q6	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{aligned} & \quad f(x+h)-f(x)=(2 x+2 h+4)^{2}-(2 x+4)^{2} \\ & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}= \\ & =\lim _{h \rightarrow 0}\left(\frac{\left[\left(4 x^{2}+8 h x+4 h^{2}+16 x+16 h+16\right)\right]}{-\left(4 x^{2}+16 x+16\right)} \frac{(2 x+2 h+4)^{2}-(2 x+4)^{2}}{h}\right) \\ & =\lim _{h \rightarrow 0} \frac{8 h x+4 h^{2}+16 h}{h} \\ & =8 x+16 \end{aligned}$ or $\begin{gathered} f(x)=(2 x+4)^{2}=4 x^{2}+16 x+16 \\ f(x+h)=4(x+h)^{2}+16(x+h)+16 \\ =4 x^{2}+8 h x+4 h^{2}+16 x+16 h+16 \\ \\ \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ \lim _{h \rightarrow 0} \frac{8 h x+4 h^{2}+16 h}{h} \\ =8 x+16 \end{gathered}$	Scale 10D (0, 2, 5, 8, 10) Low Partial Credit - any $f(x+h)$ Mid Partial Credit - limit of $\frac{f(x+h)-f(x)}{h}$ High Partial Credit - limit of $\frac{(2 x+2 h+4)^{2}-(2 x+4)^{2}}{h}$ Notes: - omission of limit sign penalised once only - answer not from $1^{\text {st }}$ Principles merits 0 marks

(b) (i) + (ii)	$\begin{gathered} y=x \cdot \sin \frac{1}{x} \\ \frac{d y}{d x}=\sin \frac{1}{x}+x\left(\cos \frac{1}{x}\right)\left(-\frac{1}{x^{2}}\right) \\ \frac{d y}{d x}=\sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x} \\ \frac{d y}{d x}=\sin \frac{\pi}{4}-\frac{\pi}{4} \cos \frac{\pi}{4} \\ =0.15 \end{gathered}$	Scale 15D (0, 4, 7, 11, 15) Low Partial Credit - any correct differentiation Mid Partial Credit - product rule applied High Partial Credit - correct differentiation Note: one penalty for calculator in wrong mode

Q7	Model Solution - 40 Marks	Marking Notes
(a) (i)	$\begin{gathered} v=\frac{4}{3} \pi r^{3} \Rightarrow \frac{d v}{d r}=4 \pi r^{2} \\ \frac{d v}{d t}=250 \mathrm{~cm}^{3} / \mathrm{s} \\ \frac{d r}{d t}=\frac{d r}{d v} \cdot \frac{d v}{d t}=\frac{1}{4 \pi r^{2}} \cdot 250 \\ \frac{d r}{d t}=\frac{250}{4 \pi 400}=\frac{5}{32 \pi} \mathrm{~cm} / \mathrm{s} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - work towards $\frac{d v}{d r}$ or $\frac{d v}{d t}$ or $\frac{d r}{d t}$ High Partial Credit - correct expression for $\frac{d r}{d t}$
(ii)	$\begin{gathered} a=4 \pi r^{2} \Rightarrow \frac{d a}{d r}=8 \pi r \\ \frac{d a}{d t}=\frac{d a}{d r} \cdot \frac{d r}{d t}=8 \pi r \cdot \frac{5}{32 \pi} \\ =\frac{5(20)}{4} \\ =25 \mathrm{~cm}^{2} / \mathrm{s} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - work towards $\frac{d a}{d r}$ or $\frac{d a}{d t}$ High Partial Credit - correct expression for $\frac{d a}{d t}$
(b) (i)	$\begin{aligned} -x^{2}+10 x & =0 \\ x(-x+10) & =0 \\ x=0 & \text { or } \quad x \end{aligned}=10$	Scale 10C (0, 3, 7, 10) Low Partial Credit - quadratic equation formed - gets $x=0$ only High Partial Credit - quadratic factorised Note: $f^{\prime}(x)=0 \Rightarrow 2 x-10=0 \Rightarrow x=5$ merits 0 marks
(ii)	$\begin{aligned} & \frac{1}{10-0} \int_{0}^{10}\left(-x^{2}+10 x\right) d x \\ & \quad=\frac{1}{10}\left[\frac{-x^{3}}{3}+5 x^{2}\right]_{0}^{10} \\ & =\frac{1}{10}\left[\left(\frac{-1000}{3}+500\right)-0\right] \\ & \quad=\frac{-100}{3}+50=\frac{50}{3} \mathrm{~m} \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - integration set up High Partial Credit - correct integration with some substitution

Q8	Model Solution - 55 Marks	Marking Notes
(a) (i)	$\begin{gathered} f(x)=-0 \cdot 274 x^{2}+1 \cdot 193 x+3 \cdot 23 \\ f^{\prime}(x)=-0 \cdot 548 x+1 \cdot 193=0 \\ x=2 \cdot 177 \mathrm{~m} \end{gathered}$ $\begin{gathered} f(2 \cdot 177)=-0 \cdot 274(2 \cdot 177)^{2} \\ +1 \cdot 193(2 \cdot 177)+3 \cdot 23 \\ =-1 \cdot 2986+2 \cdot 5972+3 \cdot 23 \\ =4 \cdot 529 \mathrm{~m} \\ \text { or } \\ -0 \cdot 274\left(x^{2}-\frac{1193}{274} x-\frac{1615}{137}\right) \\ -0 \cdot 274\left(x-\frac{1193}{548}\right)^{2}+4.5285 \\ \text { Max Height }=4.529 \mathrm{~m} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - any correct differentiation - effort made at completing square - trial and error with more than one value of x tested High Partial Credit - x value correct Note: if correct answer by trial and error, must show points on each side of max point to be lower to earn full credit
(ii)	$\begin{gathered} \tan \theta=-0 \cdot 548(4 \cdot 5)+1 \cdot 193 \\ \tan \theta=-1 \cdot 273 \\ \theta=51 \cdot 8^{\circ}=52^{\circ} \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit - tan Note: right angled triangles may appear in diagram given in equation
(iii)	$\begin{gathered} \text { Map } A \rightarrow C \\ (-0 \cdot 5,2 \cdot 565) \rightarrow(0,2) \\ 2 \cdot 177-(-0 \cdot 5)=2 \cdot 677 \\ 4 \cdot 529-0.565=3 \cdot 964 \\ (2 \cdot 177,4 \cdot 529) \rightarrow(2 \cdot 677,3 \cdot 964) \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit - $(-0 \cdot 5,2 \cdot 565) \rightarrow(0,2)$

(b) (i)	200 m Race: $\begin{array}{r} y=a(b-x)^{c} \\ y=4 \cdot 99087(42 \cdot 5-23 \cdot 8)^{1 \cdot 81} \\ y=1000 \end{array}$ Javelin: $\begin{gathered} y=a(x-b)^{c} \\ y=15 \cdot 9803(58 \cdot 2-3 \cdot 8)^{1.04} \\ y=1020 \end{gathered}$	Scale 10D (0, 2, 5, 8, 10) Low Partial Credit - some relevant substitution into one formula Mid Partial Credit - one value of y found - some relevant substitution into both formulas High Partial Credit - one value correct and some relevant substitution into second formula - uses incorrect formula (once only)
(ii)	$\begin{gathered} y=a(x-b)^{c} \\ 1295=15 \cdot 9803(x-3 \cdot 8)^{1.04} \\ 81 \cdot 0373=(x-3 \cdot 8)^{1.04}=z^{1.04} \\ \log z=\frac{\log 81 \cdot 0373}{1 \cdot 04} \\ z=68 \cdot 4343=(x-3 \cdot 8) \\ x=72 \cdot 2343=72 \cdot 23 \mathrm{~m} \end{gathered}$	Scale 5B (0, 2, 5) Partial Credit - some relevant substitution into formula
(iii)	$\begin{gathered} y=a(b-x)^{c} \\ 1087=0 \cdot 11193(254-121 \cdot 84)^{c} \\ \frac{1087}{0 \cdot 11193}=(132 \cdot 16)^{c} \\ \log 9711 \cdot 426=c \log 132 \cdot 16 \\ c=\frac{\log 9711 \cdot 426}{\log 132 \cdot 16}=1.88 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - some relevant substitution into formula High Partial Credit - fully correct substitution into formula

Q9	Model Solution - 55 Marks	Marking Notes
(a)(i)	$\begin{gathered} 4,2,1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \\ S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\ S_{n}=\frac{4\left(1-\left(\frac{1}{2}\right)^{n}\right)}{1-\frac{1}{2}}=7 \cdot 9375 \\ -\frac{1}{2^{n}}=-\frac{1}{128} \\ n=7 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - some listing of terms - S_{n} formula High Partial Credit - listing of exactly 7 correct terms - formula fully substituted
(a) (ii)	$\begin{gathered} S_{\infty}=\frac{a}{1-r} \\ S_{\infty}=\frac{4}{1-\frac{1}{2}}=8 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - S_{∞} formula High Partial Credit - formula fully substituted

	1	2	3	4	5	6	7	8	9
Chg	+4	0	-1	0	$\frac{1}{4}$	0	$-\frac{1}{16}$	0	$\frac{1}{64}$
Chg	0	2	0	$-\frac{1}{2}$	0	$\frac{1}{8}$	0	$-\frac{1}{32}$	0
(a) (iii)	$\begin{gathered} S_{\infty}=\frac{4}{1-\left(-\frac{1}{4}\right)}=3 \cdot 2=\frac{16}{5} \\ S_{\infty}=\frac{2}{1-\left(-\frac{1}{4}\right)}=1 \cdot 6=\frac{8}{5} \\ \left(\frac{16}{5}, \frac{8}{5}\right) \text { or }(3 \cdot 2,1 \cdot 6) \end{gathered}$				Scale 15D (0, 4, 7, 11, 15) Low Partial Credit - 2 extra entries correct in either row Mid Partial Credit - either row fully correct High Partial Credit - one co-ordinate correct Notes: - need to see S_{∞} correctly used to move beyond Mid Partial Credit - no S_{∞} merits Mid Partial Credit at most				
(b) (i)	$G_{5}=F$	Male	ale,F	Male	Scale 5B $(0,2,5)$ Partial Credit - one correct entry				
(b) (ii)	$\begin{gathered} G_{6}=G_{5}+G_{4}=5+3=8 \\ G_{7}=G_{6}+G_{5}=8+5=13 \end{gathered}$				Scale $10 \mathrm{C}(0,3,7,10)$ Low Partial Credit - $G_{6}=G_{5}+G_{4}$ - $G_{7}=G_{6}+G_{5}$ - G_{7} or G_{6} correct - 8 and/or 13 without work High Partial Credit - correct substitution in both				

(b)
(iii)

$$
\begin{aligned}
G_{3} & =\frac{(1+\sqrt{5})^{3}-(1-\sqrt{5})^{3}}{2^{3} \sqrt{5}}=2 \\
(1+\sqrt{5})^{3} & =\left(1+3 \sqrt{5}+3 \sqrt{5}^{2}+\sqrt{5}^{3}\right) \\
& =16+8 \sqrt{5} \\
(1-\sqrt{5})^{3} & =\left(1-3 \sqrt{5}+3 \sqrt{5}^{2}-\sqrt{5}^{3}\right) \\
& =16-8 \sqrt{5} \\
G_{3} & =\frac{6 \sqrt{5}+2 \sqrt{5}^{3}}{8 \sqrt{5}} \\
& =\frac{6+2 \sqrt{5}^{2}}{8}=\frac{16}{8}=2 \quad \text { Q.E.D. }
\end{aligned}
$$

Scale 5B (0, 2, 5)
Partial Credit

- some correct substitution
- using approximate value for $\sqrt{5}$
- $G_{3}=2$
- some effort at cubing

Note: use of $\sqrt{5}$ as approximation, even if rounded off to 2 at end of work merits at most Partial Credit

Blank Page

Leaving Certificate 2016

Model Solutions and Marking Scheme

Mathematics

Higher Level

Paper 2

Marking Scheme - Paper 1, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	B	C	D	E
No of categories	2	3	4	5	6
5 mark scales		$0,2,5$	$0,2,4,5$		
10 mark scales		$0,5,10$	$0,3,7,10$	$0,3,5,8,10$	
15 mark scales			$0,5,10,15$	$0,4,7,11,15$	
20 mark scales					
25 mark scales					

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

E-scales (six categories)

- response of no substantial merit
- response with some merit
- response almost half-right
- response more than half-right
- almost correct response
- correct response

In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Thus, for example, in scale 10C, 9 marks may be awarded. Throughout the scheme indicate by use of $*$ where an arithmetic error occurs.

Summary of mark allocations and scales to be applied

Section A

Question 1

$\begin{array}{ll}\text { (a) } & 10 C \\ \text { (b) } & 15 \mathrm{D}\end{array}$
15D

Question 2

(a) 10 C
(b)

15D

Question 3

(a) 15 C
(b) 10D

Question 4

(a)(i)	15 C
(a)(ii)	5 C

(b) 5 C

Question 5

(a) (i) 5B
(ii) 10 C
(b) 10 C

Question 6
(a) 10 C
(b) 10 C
(c) 5 C

Section B

Question 7

(a)(i) 10 C
(a)(ii) 10B
(a)(iii) 10C
(a)(iv) 10 C
(a)(v) 10D
(b) 5 C

Question 8
(a) 5 C
(b) 5 B
(c) 5 C
(d)(i) 10 C
(d)(ii) 10C
(e) $5 B$
(f) 5B

Question 9
(a)(i)

10D
(a)(ii) 5C
(a)(iii) 15D
(b) 10 C
(c) 5 B
(d) 5 C

Model Solutions \& Detailed Marking Notes

Note: The model solutions for each question are not intended to be exhaustive - there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his/her Advising Examiner.

Q1	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} \text { Slope } A C=-\frac{2}{3} \\ \text { perp. slope }=\frac{3}{2} \\ y-3=\frac{3}{2}(x-5) \\ 3 x-2 y=9 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - slope formula with some relevant substitution - $3=5 m+c$ - $y-y_{1}=m\left(x-x_{1}\right)$ with x_{1} or y_{1} or both substituted High Partial Credit - perpendicular slope - equation of line through B parallel to $A C$
(b)	Point of intersection of the altitudes Slope $A B=\frac{3+2}{5-6}=-\frac{5}{1}$ $\begin{gathered} \text { perp. slope }=\frac{1}{5} \\ y-4=\frac{1}{5}(x+3) \\ x-5 y+23=0 \end{gathered}$ Orthocentre: $\begin{gathered} 3 x-2 y=9 \cap x-5 y=-23 \\ \Rightarrow y=6 \quad \begin{array}{c} x=7 \\ (7,6) \end{array} \end{gathered}$ or If $B C$ chosen: Slope $B C=\frac{3-4}{5+3}=-\frac{1}{8}$ $\text { perp. slope }=8$ Equation of altitude: $y+2=8(x-6)$ Equation: $8 x-y=50$ Orthocentre: $\begin{align*} & 3 x-2 y=9 \cap 8 x-y=50 \\ & \Rightarrow y=6 \quad x=7 \tag{7,6} \end{align*}$	Scale 15D (0, 4, 7,11,1 5) Low Partial Credit - demonstration of understanding of orthocentre (e.g. mentions altitude) - slope formula with some relevant substitution - altitude from part (a) Mid Partial Credit - equation of an altitude other than (a) - some relevant substitution towards finding a second altitude and altitude from (a) - correct construction High Partial Credit - two correct altitudes - correct construction with orthocentre $(7,6)$

Q2	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} y-6=\frac{1}{7}(x+1) \\ x-7 y+43=0 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit: - equation of line formula with some relevant substitution High Partial Credit: - equation of line not in required form
(b)	$\begin{gather*} D=\frac{\left\|a x_{1}+b y_{1}+c\right\|}{\sqrt{a^{2}+b^{2}}} \\ D=\frac{\|3(-g)+4(-f)-21\|}{\sqrt{3^{2}+4^{2}}} \\ 25=\|-3 g-4 f-21\| \\ -3 g-4 f-21= \pm 25 \\ \Rightarrow 3 g+4 f=-46 \ldots \text { (i) } \\ \text { and } 3 g+4 f=4 \ldots \text { (ii) } \tag{ii} \end{gather*}$ But $(-g,-f) \in x-7 y+43=0$ $\begin{align*} & \Rightarrow-g+7 f+43=0 \ldots \tag{iii}\\ & \Rightarrow g=7 f+43 \end{align*}$ Solving : $g=7 f+43$ and $3 g+4 f=-46$ $f=-7 \text { and } g=-6$ Centre $(6,7)$ $(x-6)^{2}+(y-7)^{2}=25$ or Solving: $g=7 f+43$ and $3 g+4 f=4$ $f=-5 \text { and } g=8$ Centre (-8,5) $(x+8)^{2}+(y-5)^{2}=25$	Scale 15D (0, 4, 7,11,15) Low Partial Credit - some correct substitution into relevant formula (line, circle, perpendicular distance). Mid Partial Credit - one relevant equation in g and f - (either(i) or (ii) or (iii)) High Partial Credit - two relevant equations (either (i) and (iii) or (ii) and (iii))

Q3	Model Solution - 25 Marks	Marking Notes
(a)	$\begin{gathered} \frac{2 \cos \frac{7 A+A}{2} \cos \frac{7 A-A}{2}}{2 \cos \frac{7 A+A}{2} \sin \frac{7 A-A}{2}} \\ \frac{2 \cos 4 A \cos 3 A}{2 \cos 4 A \sin 3 A} \\ =\frac{\cos 3 A}{\sin 3 A} \\ =\cot 3 A \end{gathered}$	Scale 15C ($0,5,10,15$) Low Partial Credit - sum to product formula with some substitution High Partial Credit - sum to product formula fully substituted
(b)	Method 1: $\begin{gathered} \cos ^{2} \theta=\frac{1}{2}(1+\cos 2 \theta) \\ =\frac{1}{2}\left(1+\frac{1}{9}\right)=\frac{5}{9} \\ \cos \theta= \pm \frac{\sqrt{5}}{3} \end{gathered}$ or Method 2: $\begin{aligned} \cos 2 \theta= & 1-2 \sin \theta=\frac{1}{9} \\ & 9-18 \sin ^{2} \theta=1 \\ \sin ^{2} \theta=\frac{4}{9} \Rightarrow & \sin \theta= \pm \frac{2}{3} \Rightarrow \cos \theta= \pm \frac{\sqrt{5}}{3} \end{aligned}$ or Method 3: $\begin{gathered} \cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1}{9} \\ 9-9 \tan ^{2} \theta=1+\tan ^{2} \theta \\ \tan ^{2} \theta=\frac{4}{5} \\ \Rightarrow \tan \theta= \pm \frac{2}{\sqrt{5}} \Rightarrow \cos \theta= \pm \frac{\sqrt{5}}{3} \end{gathered}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit - Use of a relevant formula in $\cos 2 \theta$ - $\cos ^{-1}\left(\frac{1}{9}\right)=83.62^{\circ}$ - $\theta=41 \cdot 8^{\circ}$ Mid Partial Credit - correct substitution (method 1$)$ - expression in $\sin ^{2} \theta$ (method 2$)$ - expression in $\tan ^{2} \theta(\operatorname{method} 3)$ - expression in $\cos ^{2} \theta(\operatorname{method} 4)$ - $\theta=41 \cdot 8^{\circ}$ and $\theta=132 \cdot 2^{\circ}$ or $\theta=221 \cdot 8^{\circ}$ High Partial Credit - one value only (e.g. $+\frac{\sqrt{5}}{3}$) - values found for $\cos 41.8^{\circ}$ and $\cos 138 \cdot 2^{\circ}$ or $\cos 221.8^{\circ}$

	or
Method 4:	
$\sin ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$	
$1-\cos ^{2} \theta=\frac{1}{2}(1-\cos 2 \theta)$	
$2-2 \cos ^{2} \theta=1-\cos 2 \theta$	
$\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}=\frac{1+\frac{1}{9}}{2}$	
$\cos ^{2} \theta=\frac{5}{9}$	
$\cos \theta= \pm \frac{\sqrt{5}}{3}$	

Q4	Model Solution - 25 Marks	Marking Notes
$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \|\angle A B D\|=\|\angle C B D\|=90^{\circ} \ldots \ldots . . \text { (i) } \\ & \|\angle B D C\|+\|\angle B C D\|=90^{\circ} \ldots \text { angles in triangle } \\ & \text { sum to } 180^{\circ} \\ & \|\angle A D B\|+\|\angle B D C\|=90^{\circ} \ldots . \text { angle in } \\ & \text { semicircle } \\ & \|\angle A D B\|+\|\angle B D C\|=\|\angle B D C\|+\|\angle B C D\| \\ & \|\angle A D B\|=\|\angle B C D\| \ldots \text { (ii) } \\ & \therefore \text { Triangles are equiangular (or similar) } \\ & \text { or } \\ & \|\angle A B D\|=\|\angle C B D\|=90^{\circ} \ldots \ldots . . \text { (i) } \\ & \|\angle D A B\|=\|\angle D A C\| \text { same angle } \Rightarrow\|\angle A D B\| \\ & =\|\angle D C A\| \text { (reasons as above) which is } \\ & \text { also } \angle D C B \ldots \text { (ii) } \end{aligned}$	Scale 15C (0, 5, 10, 15) Low Partial Credit - identifies one angle of same size in each triangle High Partial Credit - identifies second angle of same size in each triangle - implies triangles are similar without justifying (ii) in model solution or equivalent
(a) (ii)	$\begin{gathered} \frac{y}{1}=\frac{x}{y} \\ \Rightarrow y^{2}=x \\ y=\sqrt{x} \end{gathered}$ or $\begin{gathered} \|A D\|^{2}+\|D C\|^{2}=\|A C\|^{2} \\ \|A D\|=\sqrt{x^{2}+y^{2}} \\ \|D C\|=\sqrt{y^{2}+1} \\ x^{2}+y^{2}+y^{2}+1=(x+1)^{2} \\ 2 y^{2}=2 x \\ y=\sqrt{x} \end{gathered}$ Or $\begin{gathered} \frac{\sqrt{x^{2}+y^{2}}}{\sqrt{y^{2}+1}}=\frac{y}{1} \Rightarrow x^{2}+y^{2}=y^{2}\left(y^{2}+1\right) \\ y^{4}=x^{2} \Rightarrow y^{2}=x \Rightarrow y=\sqrt{x} \end{gathered}$	Scale 5C (0, 2, 4, 5) Low Partial Credit - one set of corresponding sides identified - indicates relevant use of Pythagoras High Partial Credit - corresponding sides fully substituted - expression in y^{2} or y^{4}, i.e. fails to finish

(b)

Q6	Model Solution - 25 Marks				Marking Notes
(a)	$P(M, 3,3)=\frac{1}{26} \times \frac{1}{10} \times \frac{1}{10}=\frac{1}{2600}$				Scale 10C (0, 3, 7, 10) Low Partial Credit - any correct relevant probability High Partial credit - correct probabilities but not expressed as single fraction or equivalent Note: Accept correct answer without supporting work
(b)	Event	Payout	$\begin{aligned} & \hline \text { Prob } \\ & (P(x)) \end{aligned}$	x.P(x)	Scale 10C (0, 3, 7, 10) Low Partial Credit - 1 correct entry to table High Partial Credit - all entries correct but fails to finish or finishes incorrectly - no conclusion
	Win	1000	$\frac{1}{2600}$	$\frac{1000}{2600}$	
	$\begin{aligned} & \hline \text { letter } \\ & 1 \text { No. } \\ & \hline \end{aligned}$	50	$\frac{9}{2600}$	$\frac{450}{2600}$	
	$\begin{aligned} & \text { letter } \\ & 2^{\text {nd }} \mathrm{No} \text { o } \\ & \hline \end{aligned}$	50	$\frac{9}{2600}$	$\frac{450}{2600}$	
	letter only	50	$\frac{81}{2600}$	$\frac{4050}{2600}$	
	Fail to win	0		0	
		$\sum x . P$ Club lose	$(x)=\frac{5950}{2600}=$ 29 cent per p Or	$=2 \cdot 29$ ay	
	Event	$\begin{aligned} & \text { Pay } \\ & \text { out } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Prob } \\ (P(x) \end{array}$	x.P(x)	
	Win	-998	$1 / 2600$	-998/2600	
	$\begin{aligned} & \text { letter } \\ & + \\ & + \\ & 1^{\text {st }} \text { No. } \end{aligned}$	-48	$9 / 2600$	$-432 / 2600$	
	Letter + $2^{\text {nd }} \text { No }$	-48	$9 / 2600$	$-432 / 2600$	
	letter only	-48	81/2600	$-3888 / 2600$	
	Fail to Win	+2	$2500 / 2600$	$5000 / 2600$	
	$\sum x . P(x)=-\frac{750}{2600}=-29 \mathrm{cent}$				

(c)	$\begin{aligned} & \text { Profit }=\text { Revenue }- \text { Pay-out } \\ & \qquad \begin{array}{c} 600=845(x-2 \cdot 29) \\ x=\frac{600+845(2 \cdot 29)}{845} \\ x=3 \\ \text { or } \\ \frac{600}{845}=0.71 \\ 0.71+2.29=3 \end{array} \end{aligned}$	Scale 5C (0, 2, 4, 5) Low Partial Credit - links profit, revenue and payout High partial Credit - formula fully substituted

Q7	Model Solution - 55 Marks	Marking Notes
(a) (i)	$\begin{gathered} \|E C\|^{2}=3^{2}+2 \cdot 5^{2}=15 \cdot 25 \\ \|E C\|=\sqrt{15 \cdot 25} \\ \|E C\|=3.905 \\ \Rightarrow\|A C\|=1.9525 \\ =1.95 \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - Pythagoras with relevant substitution High Partial Credit - $\|E C\|$ correct - $\|A C\|=\frac{1}{2} \sqrt{15 \cdot 25}$
(a) (ii)	$\begin{gathered} \tan 50^{\circ}=\frac{\|A B\|}{1 \cdot 95} \\ \|A B\|=1 \cdot 95(1 \cdot 19175)=2 \cdot 23239 \\ \|A B\|=2 \cdot 3 \end{gathered}$	Scale 10B (0, 5, 10) Partial Credit - tan formulated correctly
(a) (iii)	$\begin{gathered} \|B C\|^{2}=1 \cdot 95^{2}+2 \cdot 3^{2} \\ \|B C\|=3 \cdot 015377 \\ \|B C\|=3 \end{gathered}$ Also: $\quad \sin 40^{\circ}=\frac{1 \cdot 95}{\|B C\|} \quad$ or $\cos 40^{\circ}=\frac{2 \cdot 3}{\|B C\|} \quad$ or $\cos 50^{\circ}=\frac{1.95}{\|B C\|} \text { or } \sin 50^{\circ}=\frac{2.3}{\|B C\|}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - Pythagoras with relevant substitution High Partial Credit - Pythagoras fully substituted - $\|B C\|=\frac{1.95}{\sin 40^{\circ}}$ (i.e. $\|B C\|$ isolated)
(a) (iv)	$\begin{gathered} 3^{2}=3^{2}+2 \cdot 5^{2}-2(3)(2 \cdot 5) \cos \propto \\ 15 \cos \propto=6 \cdot 25 \\ \propto=65^{\circ} \\ \text { or } \\ \cos \propto=\frac{1.25}{3} \\ \propto=65^{\circ} \end{gathered}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - cosine rule with some relevant substitution - cosine ratio with some relevant substitutions - identifies three sides of triangle BCD High Partial Credit - cosine rule with full relevant substitutions - cosine ratio with full relevant substitutions

(a) (v)	$\begin{gathered} A=2 \times \text { isosceles triangle }+2 \times \text { equilateral } \\ \text { triangle } \\ =2 \times\left[\frac{1}{2}(2.5)(3) \sin 65^{\circ}\right]+ \\ 2 \times\left[\frac{1}{2}(3)(3) \sin 60^{\circ}\right] \\ =14.59 \\ A=15 \end{gathered}$	Scale 10D (0,3,5,8,10) Low Partial Credit - recognises area of 4 triangles Mid Partial Credit - Area of 1 triangle correct High Partial Credit - area of isosceles triangle and equilateral triangle Note: Area $=4$ isosceles or 4 equilateral triangles merit HPC at most
(b)	$\begin{gathered} \tan 60^{\circ}=\frac{3}{\|C A\|} \\ \Rightarrow\|C A\|=\sqrt{3} \\ \|C E\|=2 \sqrt{3} \\ x^{2}+x^{2}=(2 \sqrt{3})^{2} \\ x=\sqrt{6} \end{gathered}$	Scale 5C (0, 2, 4, 5) Low Partial Credit - effort at Pythagoras but without $\|C A\|$ (or $\|C E\|)$ - $\|C A\|$ found High Partial Credit - $\|C E\|=2 \sqrt{3}$

Q8	Model Solution - 45 Marks	Marking Notes
(a)	$\begin{aligned} & \text { Period }=\frac{2 \pi}{\frac{\pi}{6}}=12 \text { hours } \\ & \text { Range }= \\ & \quad[1 \cdot 6-1 \cdot 5,1 \cdot 6+1 \cdot 5]=[0 \cdot 1 \mathrm{~m}, 3 \cdot 1 \mathrm{~m}] \end{aligned}$	Scale 5C (0, 2,4, 5) Low Partial Credit - some use of 2π or $\frac{\pi}{6}$ - range of cos function High partial credit - period or range correct Note: Accept correct period and/or range without work
(b)	$\operatorname{Max}=1 \cdot 6+1 \cdot 5(1)=3 \cdot 1 \mathrm{~m}$ or 3.1 m from range	Scale 5B (0,2,5) Partial Credit - max occurs when $\cos A=1$ or $t=0$ - effort at $h^{\prime}(t)$ Note: Accept correct answer without work
(c)	$\begin{aligned} & h^{\prime}(t)=1 \cdot 5\left(-\sin \frac{\pi t}{6}\right) \frac{\pi}{6} \\ & h^{\prime}(2)=1.5\left(-\sin \frac{2 \pi}{6}\right) \frac{\pi}{6} \\ & =-0.68017=-0.68 \mathrm{~m} / \mathrm{h} \end{aligned}$ Tide is going out at a rate of 0.68 m per hour at 2 am	Scale 5C (0, 2, 4, 5) Low Partial Credit - effort at differentiation High Partial Credit - correct numerical answer but not in context

(d)(i)									
$h(t)=1 \cdot 6+1 \cdot 5 \cos \left(\frac{\pi}{6} t\right)$									
Time	12 am	3 am	6 am	9 am	12 pm	3 pm	6 pm	9 pm	12 am
t	0	3	6	9	12	15	18	21	24
Height	3.1	1.6	$\cdot 1$	1.6	$3 \cdot 1$	1.6	$\cdot 1$	1.6	3.1

| (d) |
| :--- | :--- | :--- |
| (i) |\quad| Scale 10C $(0,3,7,10)$ |
| :--- |
| Low Partial Credit |
| \bullet one correct height |
| High Partial Credit |
| \bullet five correct heights |

(e)	Low tide $=0.1 \mathrm{~m}$ High tide $=3.1 \mathrm{~m}$ Difference $=3 \cdot 1-0 \cdot 1=3 \mathrm{~m}$	Scale 5B (0, 2, 5) Partial Credit - height of Low tide or High tide correctly identified Notes: (i) candidates may show work for this section on graph (ii) accept values from candidate's graph (iii) accept correct answer from graph without work
(f)	Enter port at 9:30 approx Leave port before 15:15 approx Time $=15: 15-9: 30=5 \mathrm{hr} 45 \mathrm{~min}$ approx.	Scale 5B (0, 2, 5) Partial Credit - time of entry to port or leave port correctly identified - value(s) for $h=2$ and/or $h=1.5$ on sketch - time estimated using relevant values other than those required for the maximum time. Notes: (i) candidates may show relevant work for this section on graph (ii) accept values from candidate's graph

Q9	Model Solution - 50 Marks	Marking Notes
(a) (i)	$\begin{gathered} \mu=39400, \sigma=12920 \\ z=\frac{x-\mu}{\sigma}=\frac{60000-39400}{12920} \\ z=1.59 \\ P(z>1.59)=1-P(z<1.59) \\ =1-0.9441=0.0559 \\ =5.59 \% \\ =5.6 \% \end{gathered}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit - μ and σ identified Mid Partial Credit - $z=1.59$ High Partial Credit - identifies 0.9441
(a) (ii)	$\begin{gathered} P\left(z \leq z_{1}\right)=0 \cdot 9 \\ z_{1}=1 \cdot 28 \\ \Rightarrow z_{2}=-1 \cdot 28 \\ \Rightarrow \frac{x-39400}{12920}=-1 \cdot 28 \\ x=22862 \cdot 40 \\ =€ 22862 \end{gathered}$	Scale 5C (0, 2, 4, 5) Low Partial Credit - identifies 1.28 but fails to progress High Partial Credit - formula for x fully substituted
(a) (iii)	$\begin{gathered} \mu=39400, \quad \sigma=12920, \\ \bar{x}=38280, \quad n=1000 \\ H_{0} \Rightarrow \mu=39400 \\ H_{1} \Rightarrow \mu \neq 39400 \\ z=\frac{38280-39400}{\frac{12920}{\sqrt{1000}}}=-2.74 \\ -2.74<-1.96 \end{gathered}$ Result is significant. There is evidence to reject the null hypothesis The mean income has changed.	Scale 15D (0, 4, 7, 11,15) Low Partial Credit - z formulated with some substitution - states null and/or alternative hypothesis only - reference to 1.96 Mid Partial Credit - z fully substituted High Partial Credit - $z=-2.74$ and stops - fails to state the null and alternative hypothesis correctly - fails to contextualise the answer

Q9		Marking Notes
(b)	$\begin{aligned} 26974-1.96\left(\frac{5120}{\sqrt{400}}\right) & \leq \mu \\ & \leq 26974+1.96\left(\frac{5120}{\sqrt{400}}\right) \\ 26472.24 & \leq \mu \leq 27475.76 \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit - interval formulated with some correct substitution High Partial Credit - interval formulated with fully correct substitution
(c)	The distribution of sample means will be normally distributed	Scale 5B (0, 2, 5) Partial Credit - mentions 30 (or more) but not contextualised
(d)	$\begin{gathered} \frac{1}{\sqrt{n}}=0.045 \\ \frac{1}{0.045}=\sqrt{n} \\ n=\left(\frac{1}{0.045}\right)^{2}=493.827 \end{gathered}$	Scale 5C (0, 2, 4, 5) Low Partial Credit - $\frac{1}{\sqrt{n}}$ High Partial Credit - n formulated with fully correct substitution Note: Accept 493 farmers or 494 farmers

Marcanna breise as ucht freagairt trí Ghaeilge

(Bonus marks for answering through Irish)

Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don pháipéar. Ba chóir freisin an marc bónais sin a shlánú síos.

Déantar an cinneadh agus an ríomhaireacht faoin marc bónais i gcás gach páipéir ar leithligh.
Is é 5% an gnáthráta agus is é 300 iomlán na marcanna don pháipéar. Mar \sin, bain úsáid as an ngnáthráta 5% i gcás iarrthóirí a ghnóthaíonn 225 marc nó níos lú, e.g. $198 \mathrm{marc} \times 5 \%=9 \cdot 9 \Rightarrow$ bónas $=9$ marc.

Má ghnóthaíonn an t-iarrthóir níos mó ná 225 marc, ríomhtar an bónas de réir na foirmle [300 - bunmharc] $\times 15 \%$, agus an marc bónais sin a shlánú síos. In ionad an ríomhaireacht sin a dhéanamh, is féidir úsáid a bhaint as an tábla thíos.

Bunmharc	Marc Bónais
226	11
$227-233$	10
$234-240$	9
$241-246$	8
$247-253$	7
$254-260$	6
$261-266$	5
$267-273$	4
$274-280$	3
$281-286$	2
$287-293$	1
$294-300$	0

Blank Page

Blank Page

Blank Page

