

Question 3 (25 marks)

(a) Factorise fully: 3xy - 9x + 4y - 12.

(b) $g(x) = 3x \ln x - 9x + 4 \ln x - 12$. Using your answer to **part (a)** or otherwise, solve g(x) = 0.

(c) Evaluate g'(e) correct to 2 decimal places.

Marking Scheme

(a)

(3x+4)(y-3)

Scale 5B (0, 2, 5)

Mid Partial Credit:

- Any relevant factorisation

(b)	$3xlnx - 9x + 4lnx - 12 =$ $3x(lnx - 3) + 4(lnx - 3) =$ $(3x + 4)(lnx - 3)$ $3x + 4 = 0 \Rightarrow x = -\frac{4}{3} \text{ (not possible)}$ $lnx - 3 = 0$ $lnx = 3$ $x = e^{3}$	Scale 10D (0, 4, 5, 8, 10) Low Partial Credit: - Any relevant factorisation of $g(x)$ - Trial and improvement with at least two values tested - Substitutes $20 \le x \le 20.1$ - $y = lnx$		
		 Mid Partial Credit Expression fully factorised High Partial Credit: lnx = 3 Full Credit -1: Both solutions presented 		
		Note: Accept $x = 20.1$ for $x = e^3$ in the last line of the solution Note: If no reference is made to $3x + 4$ in the solution, then award high partial credit at most		
(c)	$g'(x) = 3x\left(\frac{1}{x}\right) + (3)\ln x - 9 + 4\left(\frac{1}{x}\right)$ $g'(e) = 3(e)\left(\frac{1}{e}\right) + (3)\ln(e) - 9 + 4\left(\frac{1}{e}\right)$ $g'(e) = 3 + 3 - 9 + \frac{4}{e} = -1.53$	Scale 10D (0, 4, 5, 8, 10) Low Partial Credit: - Any relevant differentiation - g(e) evaluated correctly to at least 2 decimal places		
		 Mid Partial Credit Expression fully differentiated Product rule not applied but finishes correctly 		

High Partial Credit:
- Derivative fully substituted

Question 3 (25 marks)

(a) Differentiate $\frac{1}{3}x^2 - x + 3$ from first principles with respect to x.

(b) $f(x) = \ln(3x^2 + 2)$ and g(x) = x + 5, where $x \in \mathbb{R}$. Find the value of the derivative of f(g(x)) at $x = \frac{1}{4}$. Give your answer correct to 3 decimal places.

(a) $f(x+h) = \frac{1}{3}(x+h)^2 - (x+h) + 3$ $f(x) = \frac{1}{3}x^2 - x + 3$ $f(x+h) - f(x) = \frac{2xh}{3} + \frac{h^2}{3} - h$ $\frac{f(x+h) - f(x)}{h} = \frac{2x}{3} + \frac{h}{3} - 1$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{2x}{3} - 1$

Scale 20D (0, 5, 14, 17, 20)

Low Partial Credit

• any f(x+h)

Mid Partial Credit

• f(x+h) - f(x) with some correct

High Partial Credit

•
$$\frac{\frac{1}{3}(x+h)^2 - (x+h) + 3 - \left(\frac{x^2}{3} - x + 3\right)}{h}$$
 simplified

Notes:

- omission of limit sign penalised once only
- answer not from 1st Principles merits 0 marks

(b)
$$\frac{d(fg(x))}{dx} = \frac{1}{(3(x+5)^2+2)}(6(x+5))$$
$$\frac{d(fg(\frac{1}{4}))}{dx} = \frac{6(\frac{21}{4})}{3(\frac{21}{4})^2+2} = \frac{504}{1355}$$
$$= 0.372$$

OR

$$f(x) = \ln(3x^2 + 2)$$

$$g(x) = (x + 5)$$

$$f[g(x)] = \ln[3(x + 5)^2 + 2]$$

$$= \ln(3x^2 + 30x + 77)$$

$$f'(x) = \frac{6x + 30}{3x^2 + 30x + 77}$$

$$x = \frac{1}{4} : f'(x) = \frac{31.5}{84.6875} = 0.3719$$

$$= 0.372$$

Scale 5C (0, 3, 4, 5)

Low Partial Credit:

- Any correct differentiation
- fg(x) formulated

High Partial Credit:

• $\frac{d(fg(x))}{dx}$ found

Note:

Work with $f(x) \times g(x)$ merits low partial credit at most

(a)
$$r = \frac{42 \cdot 75}{95} = \frac{9}{20} \qquad T_n = ar^{n-1} < 0.01$$

$$95 \left(\frac{9}{20}\right)^{n-1} < 0.01$$

$$\left(\frac{9}{20}\right)^{n-1} < \frac{0.01}{95}$$

$$(n-1)\log\left(\frac{9}{20}\right) < \log\left(\frac{0.01}{95}\right)$$

$$(n-1) > \frac{\log\left(\frac{0.01}{95}\right)}{\log\left(\frac{9}{20}\right)}$$
(since $\log\left(\frac{9}{20}\right)$ is negative)
$$n-1 > 11 \cdot 47$$

$$n > 12 \cdot 47$$

$$12^{\text{th}} \text{ day}$$
(b)
$$4(2) + 4\sqrt{2} + 4 + \cdots$$

$$a = 8 \quad r = \frac{1}{\sqrt{2}}$$

$$S_{\infty} = \frac{a}{1-r}$$

$$S_{\infty} = \frac{8}{1-\frac{1}{\sqrt{2}}}$$

$$S_{\infty} = \frac{8}{1-\frac{1}{\sqrt{2}}}$$

$$Correct$$

 $S_{\infty} = 16 + 8\sqrt{2}$

Scale 15D (0, 5, 8, 12, 15) Low Partial Credit: • r found • T_n of a GP with some substitution Mid Partial Credit: • Inequality in n written High Partial Credit: • Inequality in *n* simplified (log handled) Full Credit: • Accept n = 12.47Scale 10C (0, 5, 8, 10) Low Partial Credit: • length of one side of new square High Partial Credit: • S_{∞} fully substituted · Correct work with one side only $S_{\infty} = \frac{8}{1 - \frac{1}{\sqrt{2}}}$ $S_{\infty} = \frac{8}{1 - \frac{1}{\sqrt{2}}} \cdot \frac{1 + \frac{1}{\sqrt{2}}}{1 + \frac{1}{\sqrt{2}}}$ $S_{\infty} = \frac{8\left(1 + \frac{1}{\sqrt{2}}\right)}{\frac{1}{2}}$

Question 5 (25 marks)

The function f is such that $f(x) = 2x^3 + 5x^2 - 4x - 3$, where $x \in \mathbb{R}$.

(a) Show that x = -3 is a root of f(x) and find the other two roots.

(b) Find the co-ordinates of the local maximum point and the local minimum point of the function f.

(c) f(x) + a, where a is a constant, has only one real root. Find the range of possible values of a.

Marking Scheme

(c)

 $a > \frac{100}{27}$ or a < -9

(a)	$f(x) = 2x^{3} + 5x^{2} - 4x - 3$ $f(-3) = 2(-3)^{3} + 5(-3)^{2} - 4(-3)$ -3 $= -54 + 45 + 12 - 3$ $f(-3) = 0$ $\Rightarrow (x+3) \text{ is a factor}$ $\frac{2x^{2} - x - 1}{x+3\sqrt{2}x^{3} + 5x^{2} - 4x - 3}$ $\frac{2x^{3} + 6x^{2}}{-x^{2} - 4x}$ $\frac{-x^{2} - 3x}{-x - 3}$ $f(x) = (x+3)(2x^{2} - x - 1)$ $f(x) = (x+3)(2x+1)(x-1)$ $x = -3$ $x = -\frac{1}{2}$ $x = 1$	Scale 15C (0, 5, 10, 15) Low Partial Credit: • Shows $f(-3) = 0$ High Partial Credit: • quadratic factor of $f(x)$ found Note: No remainder in division may be stated as reason for $x = -3$ as root
(b)	$y = 2x^{3} + 5x^{2} - 4x - 3$ $\frac{dy}{dx} = 6x^{2} + 10x - 4 = 0$ $3x^{2} + 5x - 2 = 0$ $(x + 2)(3x - 1) = 0$ $3x - 1 = 0 x + 2 = 0$ $x = \frac{1}{3} x = -2$ $f\left(\frac{1}{3}\right) = \frac{-100}{27} f(-2) = 9$ $Max = (-2, 9) Min = \left(\frac{1}{3}, \frac{-100}{27}\right)$	 Scale 5C (0, 3, 4, 5) Low Partial Credit: • dy/dx found (Some correct differentiation) High Partial Credit • roots and one y value found Note: One of Max/Min must be identified for full credit

Scale 5B (0, 3, 5)
Partial Credit:

• one value identified

• no range identified (from 2 values)

(a) Differentiate the function $(2x + 4)^2$ from first principles, with respect to x.

(b) (i) If $y = x \sin\left(\frac{1}{x}\right)$, find $\frac{dy}{dx}$.

(ii) Find the slope of the tangent to the curve $y = x \sin\left(\frac{1}{x}\right)$, when $x = \frac{4}{\pi}$. Give your answer correct to two decimal places.

Marking Scheme

Q6 Model Solution – 25 Marks	Marking Notes
$f(x+h) - f(x) = (2x + 2h + 4)^{2} - (2x + 4)^{2}$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} =$ $\lim_{h \to 0} \frac{(2x + 2h + 4)^{2} - (2x + 4)^{2}}{h}$ $= \lim_{h \to 0} \left(\frac{\left[(4x^{2} + 8hx + 4h^{2} + 16x + 16h + 16)\right] - (4x^{2} + 16x + 16)}{h}\right)$ $= \lim_{h \to 0} \frac{8hx + 4h^{2} + 16h}{h}$ $= 8x + 16$ or $f(x) = (2x + 4)^{2} = 4x^{2} + 16x + 16$ $f(x+h) = 4(x+h)^{2} + 16(x+h) + 16$ $= 4x^{2} + 8hx + 4h^{2} + 16x + 16h + 16$ $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\lim_{h \to 0} \frac{8hx + 4h^{2} + 16h}{h}$ $= 8x + 16$	-

(i)+

$$y = x \cdot \sin \frac{1}{x}$$

$$\frac{dy}{dx} = \sin \frac{1}{x} + x \left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)$$

$$\frac{dy}{dx} = \sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x}$$

$$\frac{dy}{dx} = \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x}$$

$$\frac{dy}{dx} = \sin\frac{\pi}{4} - \frac{\pi}{4}\cos\frac{\pi}{4}$$

$$= 0.15$$

Scale 15D (0, 4, 7, 11, 15)

Low Partial Credit

• any correct differentiation

Mid Partial Credit

• product rule applied

High Partial Credit

• correct differentiation

Note: one penalty for calculator in wrong mode

2015

Differentiate $x - \sqrt{x+6}$ with respect to x. **(b)**

Find the co-ordinates of the turning point of the function $y = x - \sqrt{x+6}$, $x \ge -6$. (c)

Marking Scheme

(b) Differentiate $x - \sqrt{x+6}$ with respect to x.

$$f(x) = x - \sqrt{x+6} = x - (x+6)^{\frac{1}{2}}$$
$$f'(x) = 1 - \frac{1}{2}(x+6)^{-\frac{1}{2}} = 1 - \frac{1}{2\sqrt{x+6}}$$

(c) Find the co-ordinates of the turning point of the function $y=x-\sqrt{x+6}$, $x \ge -6$.

$$f'(x) = 0 \Rightarrow 1 - \frac{1}{2\sqrt{x+6}} = 0$$
$$\Rightarrow 2\sqrt{x+6} = 1$$
$$\Rightarrow x+6 = \frac{1}{4}$$
$$\Rightarrow x = -5\frac{3}{4}$$
$$f(-5\frac{3}{4}) = -5\frac{3}{4} - \sqrt{\frac{1}{4}} = -6\frac{1}{4}$$
$$\left(-5\frac{3}{4}, -6\frac{1}{4}\right)$$