(a) Factorise fully: $3 x y-9 x+4 y-12$.

(b) $g(x)=3 x \ln x-9 x+4 \ln x-12$. Using your answer to part (a) or otherwise, solve $g(x)=0$.

(c) Evaluate $g^{\prime}(e)$ correct to 2 decimal places.

Marking Scheme
(a)
$(3 x+4)(y-3)$
Scale 5B (0, 2, 5)
Mid Partial Credit:

- Any relevant factorisation
(b)

$$
\begin{array}{r}
3 x \ln x-9 x+4 \ln x-12= \\
3 x(\ln x-3)+4(\ln x-3)= \\
(3 x+4)(\ln x-3)
\end{array}
$$

$3 x+4=0 \Rightarrow x=-\frac{4}{3}$ (not possible)
$\ln x-3=0$
$\ln x=3$
$x=e^{3}$
(c)

$$
\begin{aligned}
& g^{\prime}(x)=3 x\left(\frac{1}{x}\right)+(3) \ln x-9+4\left(\frac{1}{x}\right) \\
& g^{\prime}(e)=3(e)\left(\frac{1}{e}\right)+(3) \ln (e)-9+4\left(\frac{1}{e}\right) \\
& g^{\prime}(e)=3+3-9+\frac{4}{e}=-1.53
\end{aligned}
$$

Scale 10D (0, 4, 5, 8, 10)
Low Partial Credit:

- Any relevant factorisation of $g(x)$
- Trial and improvement with at least two values tested
- Substitutes $20 \leq x \leq 20 \cdot 1$
- $y=\ln x$

Mid Partial Credit

- Expression fully factorised

High Partial Credit:

- $\quad \ln x=3$

Full Credit -1:

- Both solutions presented

Note: Accept $x=20 \cdot 1$ for $x=e^{3}$ in the last line of the solution

Note: If no reference is made to $3 x+4$ in the solution, then award high partial credit at most

Scale 10D (0, 4, 5, 8, 10)

Low Partial Credit:

- Any relevant differentiation
- $g(e)$ evaluated correctly to at least 2 decimal places

Mid Partial Credit

- Expression fully differentiated
- Product rule not applied but finishes correctly

High Partial Credit:

- Derivative fully substituted
(a) Differentiate $\frac{1}{3} x^{2}-x+3$ from first principles with respect to x.

(b) $\quad f(x)=\ln \left(3 x^{2}+2\right)$ and $g(x)=x+5$, where $x \in \mathbb{R}$.

Find the value of the derivative of $f(g(x))$ at $x=\frac{1}{4}$.
Give your answer correct to 3 decimal places.
\square

(a)	$\begin{gathered} f(x+h)=\frac{1}{3}(x+h)^{2}-(x+h)+3 \\ f(x)=\frac{1}{3} x^{2}-x+3 \\ f(x+h)-f(x)=\frac{2 x h}{3}+\frac{h^{2}}{3}-h \\ \frac{f(x+h)-f(x)}{h}=\frac{2 x}{3}+\frac{h}{3}-1 \\ \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\frac{2 x}{3}-1 \end{gathered}$	Scale 20D (0, 5, 14, 17, 20) Low Partial Credit - any $f(x+h)$ Mid Partial Credit - $f(x+h)-f(x)$ with some correct work High Partial Credit - $\frac{\frac{1}{3}(x+h)^{2}-(x+h)+3-\left(\frac{x^{2}}{3}-x+3\right)}{h}$ simplified Notes: - omission of limit sign penalised once only - answer not from $1^{\text {st }}$ Principles merits 0 marks
(b)	$\begin{aligned} & \frac{d(f g(x))}{d x}= \\ & \frac{1}{\left(3(x+5)^{2}+2\right)}(6(x+5)) \\ & \frac{d\left(f g\left(\frac{1}{4}\right)\right)}{d x}=\frac{6\left(\frac{21}{4}\right)}{3\left(\frac{21}{4}\right)^{2}+2}=\frac{504}{1355} \\ & =0.372 \end{aligned}$ OR $\begin{gathered} f(x)=\ln \left(3 x^{2}+2\right) \\ g(x)=(x+5) \\ f[g(x)]=\ln \left[3(x+5)^{2}+2\right] \\ =\ln \left(3 x^{2}+30 x+77\right) \\ f^{\prime}(x)=\frac{6 x+30}{3 x^{2}+30 x+77} \\ x=\frac{1}{4}: \quad f^{\prime}(x)=\frac{31 \cdot 5}{84 \cdot 6875}=0.3719 \\ =0.372 \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - Any correct differentiation - $f g(x)$ formulated High Partial Credit: - $\frac{d(f g(x)}{d x}$ found Note: Work with $f(x) \times g(x)$ merits low partial credit at most

(a)	$\begin{gathered} r=\frac{42 \cdot 75}{95}=\frac{9}{20} \quad T_{n}=a r^{n-1}<0.01 \\ 95\left(\frac{9}{20}\right)^{n-1}<0.01 \\ \left(\frac{9}{20}\right)^{n-1}<\frac{0 \cdot 01}{95} \\ (n-1) \log \left(\frac{9}{20}\right)<\log \left(\frac{0.01}{95}\right) \\ (n-1)>\frac{\log \left(\frac{0.01}{95}\right)}{\log \left(\frac{9}{20}\right)} \end{gathered}$ (since $\log \left(\frac{9}{20}\right)$ is negative) $\begin{gathered} n-1>11.47 \\ n>12.47 \end{gathered}$ $12^{\text {th }}$ day	Scale 15D (0, 5, 8, 12, 15) Low Partial Credit: - r found - T_{n} of a GP with some substitution Mid Partial Credit: - Inequality in n written High Partial Credit: - Inequality in n simplified (log handled) Full Credit: - Accept $n=12 \cdot 47$
(b)	$\begin{gathered} 4(2)+4 \sqrt{2}+4+\cdots \cdots \cdots \\ a=8 \quad r=\frac{1}{\sqrt{2}} \\ S_{\infty}=\frac{a}{1-r} \\ S_{\infty}=\frac{8}{1-\frac{1}{\sqrt{2}}} \\ S_{\infty}=\frac{8}{1-\frac{1}{\sqrt{2}} \cdot \frac{1+\frac{1}{\sqrt{2}}}{1+\frac{1}{\sqrt{2}}}} \\ S_{\infty}=\frac{8\left(1+\frac{1}{\sqrt{2}}\right)}{\frac{1}{2}} \\ S_{\infty}=16+8 \sqrt{2} \end{gathered}$	Scale $10 \mathrm{C}(0,5,8,10)$ Low Partial Credit: - length of one side of new square High Partial Credit: - S_{∞} fully substituted - Correct work with one side only

Question 5
(25 marks)
The function f is such that $f(x)=2 x^{3}+5 x^{2}-4 x-3$, where $x \in \mathbb{R}$.
(a) Show that $x=-3$ is a root of $f(x)$ and find the other two roots.
\qquad

(b) Find the co-ordinates of the local maximum point and the local minimum point of the function f.

(c) $f(x)+a$, where a is a constant, has only one real root. Find the range of possible values of a.

														-					-	-	,	
										-						-	-					

(a)	$\begin{gathered} f(x)=2 x^{3}+5 x^{2}-4 x-3 \\ f(-3)=2(-3)^{3}+5(-3)^{2}-4(-3) \\ -3 \\ =-54+45+12-3 \\ f(-3)=0 \\ \Rightarrow(x+3) \text { is a factor } \\ 2 x^{2}-x-1 \\ x + 3 \longdiv { 2 x ^ { 3 } + 5 x ^ { 2 } - 4 x - 3 } \\ \frac{2 x^{3}+6 x^{2}}{-x^{2}-4 x} \\ \frac{-x^{2}-3 x}{-x-3} \\ \frac{-x-3}{2} \\ f(x)=(x+3)\left(2 x^{2}-x-1\right) \\ f(x)=(x+3)(2 x+1)(x-1) \\ x=-3 \quad x=-\frac{1}{2} \quad x=1 \end{gathered}$	Scale 15C (0, 5, 10, 15) Low Partial Credit: - Shows $f(-3)=0$ High Partial Credit: - quadratic factor of $f(x)$ found Note: No remainder in division may be stated as reason for $x=-3$ as root
(b)	$\begin{gathered} y=2 x^{3}+5 x^{2}-4 x-3 \\ \frac{d y}{d x}=6 x^{2}+10 x-4=0 \\ 3 x^{2}+5 x-2=0 \\ (x+2)(3 x-1)=0 \\ 3 x-1=0 \quad x+2=0 \\ x=\frac{1}{3} \quad x=-2 \\ f\left(\frac{1}{3}\right)=\frac{-100}{27} \quad f(-2)=9 \\ \operatorname{Max}=(-2,9) \quad \text { Min }=\left(\frac{1}{3}, \frac{-100}{27}\right) \end{gathered}$	Scale 5C (0, 3, 4, 5) Low Partial Credit: - $\frac{d y}{d x}$ found (Some correct differentiation) High Partial Credit - roots and one y value found Note: One of Max/Min must be identified for full credit
(c)	$a>\frac{100}{27}$ or $a<-9$	Scale 5B (0, 3, 5) Partial Credit: - one value identified - no range identified (from 2 values)

(a) Differentiate the function $(2 x+4)^{2}$ from first principles, with respect to x.

-																										

(b) (i) If $y=x \sin \left(\frac{1}{x}\right)$, find $\frac{d y}{d x}$.

(ii) Find the slope of the tangent to the curve $y=x \sin \left(\frac{1}{x}\right)$, when $x=\frac{4}{\pi}$. Give your answer correct to two decimal places.

Q6	Model Solution-25 Marks	Marking Notes
	$\left.\begin{array}{l} \quad f(x+h)-f(x)=(2 x+2 h+4)^{2}-(2 x+4)^{2} \\ \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}= \\ =\lim _{h \rightarrow 0}\left(\frac{(2 x+2 h+4)^{2}-(2 x+4)^{2}}{h}\right. \\ =\lim _{h \rightarrow 0} \frac{8 h x+4 h^{2}+16 h}{h} \\ =8 x+16 \end{array}\right)$ or $\begin{gathered} f(x)=(2 x+4)^{2}=4 x^{2}+16 x+16 \\ f(x+h)=4(x+h)^{2}+16(x+h)+16 \\ =4 x^{2}+8 h x+4 h^{2}+16 x+16 h+16 \\ \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\ \lim _{h \rightarrow 0} \frac{8 h x+4 h^{2}+16 h}{h} \\ =8 x+16 \end{gathered}$	Scale 10D (0, 2, 5, 8, 10) Low Partial Credit - any $f(x+h)$ Mid Partial Credit - limit of $\frac{f(x+h)-f(x)}{h}$ High Partial Credit - limit of $\frac{(2 x+2 h+4)^{2}-(2 x+4)^{2}}{h}$ Notes: - omission of limit sign penalised once only - answer not from $1^{\text {st }}$ Principles merits 0 marks

Scale 15D (0, 4, 7, 11, 15)
Low Partial Credit

- any correct differentiation

Mid Partial Credit

- product rule applied

High Partial Credit

- correct differentiation

Note: one penalty for calculator in wrong mode
(b) Differentiate $x-\sqrt{x+6}$ with respect to x.

(c) Find the co-ordinates of the turning point of the function $y=x-\sqrt{x+6}, x \geq-6$.

(b) Differentiate $x-\sqrt{x+6}$ with respect to x.

$$
\begin{aligned}
& f(x)=x-\sqrt{x+6}=x-(x+6)^{\frac{1}{2}} \\
& f^{\prime}(x)=1-\frac{1}{2}(x+6)^{\frac{1}{2}}=1-\frac{1}{2 \sqrt{x+6}}
\end{aligned}
$$

(c) Find the co-ordinates of the turning point of the function $y=x-\sqrt{x+6}, x \geq-6$.

$$
\begin{aligned}
\begin{aligned}
f^{\prime}(x)=0 & \Rightarrow 1-\frac{1}{2 \sqrt{x+6}}=0 \\
& \Rightarrow 2 \sqrt{x+6}=1 \\
& \Rightarrow x+6=\frac{1}{4} \\
& \Rightarrow x=-5 \frac{3}{4} \\
f\left(-5 \frac{3}{4}\right)= & -5 \frac{3}{4}-\sqrt{\frac{1}{4}}=-6 \frac{1}{4}
\end{aligned} \\
\left(-5 \frac{3}{4},-6 \frac{1}{4}\right)
\end{aligned}
$$

