

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2023

Marking Scheme

Mathematics

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice.

Coimisiún na Scrúduithe Stáit
 State Examinations Commission

Leaving Certificate Examination 2023

Mathematics

Higher Level

Paper 1

Marking scheme

300 marks

Marking Scheme - Paper 1, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	B	C	D
No of categories	2	3	4	5
5 mark scales	0,5	$0,2,5$	$0,2,3,5$	$0,2,3,4,5$
10 mark scales	0,10	$0,5,10$	$0,4,7,10$	$0,3,5,8,10$
15 mark scales			$0,6,12,15$	$0,4,8,12,15$
20 mark scales				$0,5,10,15,20$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

Section A		Section B	
Question 1	(30 marks)	Question 7	(50 marks)
(a)	15D	(a)	5B
(b)	10D	(b)	10C
(c)	5D	(c)	10C
		(d)	10D
Question 2	(30 marks)	(e)	5C
(a)	15D	(f)	5B
(b)	5C	(g)	5D
(c)(i)(ii)	10C		
		Question 8	(50 marks)
Question 3	(30 marks)	(a)	5B
(a)	10D	(b)(i)(ii)	10D
(b)(i)	10D	(c)	5C
(b)(ii)	10C	(d)(i)(ii)	15D
		(e)	10C
Question 4	(30 marks)	(f)	5B
(a)	5C		
(b)	15D	Question 9	(50 marks)
(c)(i)(ii)(iii)	10D	(a)(i)(ii)(iii)	15D
		(b)(i)(ii)(iii)	20D
		(c)(i)	10D
Question 5	(30 marks)	(c)(ii)	5D
(a)	15C		
(b)	5D		
(c)(i)(ii)	10D	Question 10	(50 marks)
		(a)	5B
Question 6	(30 marks)	(b)	10C
(a)(i)	10C	(c)	5C
(a)(ii)	15D	(d)	10D
(b)	5D	e(i)	10C
		e(ii)	10D

Palette of annotations available to examiners

Symbol	Name	Meaning in the body of the work	Meaning when used in the right margin
	Tick	Work of relevance	The work presented in the body of the script merits full credit
\cdots	Cross	Incorrect work (distinct from an error)	The work presented in the body of the script merits 0 credit
*	Star	Rounding / Unit / Arithmetic error / Misreading	
\cdots	Horizontal wavy	Error	
P	P		The work presented in the body of the script merits Partial Credit
L	L		The work presented in the body of the script merits Low Partial Credit
M	M		The work presented in the body of the script merits Mid Partial Credit
H	H		The work presented in the body of the script merits High Partial Credit
F*	F star		The work presented in the body of the script merits Full Credit - 1
$[$	Left Bracket		Another version of this solution is presented elsewhere and it merits equal or higher credit
\} 3	Vertical wavy	No work on this page / portion of this page	
0	Oversimplify	The candidate has oversimplified the work	
WOM	Work of merit	The candidate has produced work of merit (in line with that defined in the scheme)	
S	Stops early	The candidate has stopped early in this part	

Note: Where work of substance is presented in the body of the script, the annotation on the right margin should reflect a combination of annotations in the work.

In a C scale that is not marked using steps, where ${ }^{*}$ and \sim and $\sim \sim$ appear in the body of the work, then \square should be placed in the right margin. In the case of a D scale with the same annotations, M should be placed in the right margin.

Detailed marking notes

Model Solutions \& Marking Notes

Note: The model solutions for each question are not intended to be exhaustive - there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Q1	Model Solution -30 Marks	Marking Notes
(a)	Method 1: $\begin{array}{ll} 5+3 m=11 & 5+3 m=-11 \\ 3 m=6 & 3 m=-16 \\ m=2 & m=-\frac{16}{3} \end{array}$ OR Method 2: $\begin{aligned} & (5+3 m)^{2}=11^{2} \\ & 25+30 m+9 m^{2}=121 \\ & 9 m^{2}+30 m-96=0 \\ & 3 m^{2}+10 m-32=0 \\ & (3 m+16)(m-2)=0 \\ & m=-\frac{16}{3}, \quad m=2 \end{aligned}$	Scale 15D (0, 4, 8, 12, 15) Method 1 Low Partial Credit: - 1 linear equation. - One correct value of m found without work. - Attempts at trial and improvement. Mid Partial Credit: - One value of m found with work. High Partial Credit - One value of m correctly found and work of merit in finding the second value. Method 2 Note: If quadratic does not have an m term award Mid Partial Credit at most Low Partial Credit: - Indication of squaring Mid Partial Credit: - relevant quadratic in m expanded (Line 2 of the solution) - Quadratic is missing the m term, otherwise correct High Partial Credit - quadratic factorised - quadratic formula fully substituted

Q1	Model Solution -30 Marks	Marking Notes
(b)	$\begin{aligned} & j+k=h k \\ & k-h k=-j \\ & k(1-h)=-j \\ & k=-\frac{j}{1-h} \text { or } k=\frac{j}{h-1} \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - Work of merit in eliminating fractions Mid Partial Credit - Terms with k transposed to one side of the equation High Partial Credit - $k(1-h)=-j$ or equivalent

Q1	Model Solution -30 Marks	Marking Notes
(c)	Method 1 $\begin{gathered} \frac{x+p}{x^{2}-p x+1 / x^{3}+0 x^{2}-2 x-3 r} \\ \frac{x^{3}-p x^{2}+x}{p x^{2}-3 x-3 r} \\ \frac{p x^{2}-p^{2} x+p}{\left(p^{2}-3\right) x-3 r-p} \end{gathered}$ $\begin{aligned} & p^{2}-3=0 \\ & p^{2}=3 \\ & p=-\sqrt{3}[p<0] \end{aligned}$ $\left\lvert\, \begin{aligned} & -3 r-p=0 \\ & -3 r-(-\sqrt{3})=0 \\ & \sqrt{3}=3 r \\ & r=\frac{\sqrt{3}}{3} \end{aligned}\right.$ OR Method 2 OR Method 3 $\begin{array}{rl} -p-3 r=0 & 1+3 r p=-2 \\ r p=-3 r & =-1 \\ r=-\frac{p}{3} & -\frac{p}{3}(p)=-1 \\ p^{2}=3 \\ p=-\sqrt{3}[p<0] \\ r & =\frac{\sqrt{3}}{3} \end{array}$	Scale 5D (0, 2, 3, 4, 5) Note: Full credit -1 if $\boldsymbol{p}=\sqrt{3}$ but otherwise correct Method 1 4 steps: 1. Sets up long division 2. First cycle in long division correct 3. Value of \boldsymbol{p} found 4. Value of \boldsymbol{r} found Low Partial Credit: Work of merit, for example, some correct division, or sets up long division. Mid Partial Credit: - 2 steps correct High Partial Credit - 3 steps correct Method 2 4 steps: 1. Equation set up 2. Expansion of the product (Allow with 3 or more terms correct) 3. Value of p found 4. Value of r found Low Partial Credit: - Work of merit, for example, mentions linear factor Mid Partial Credit: - 2 steps correct High Partial Credit - 3 steps correct. Method 3 1. Grid set up 2. Grid completed (Allow with 3 or more terms correct) 3. Value of p found 4. Value of r found Low Partial Credit: - Work of merit, for example, mentions linear factor. Mid Partial Credit: - 2 steps correct. High Partial Credit - 3 steps correct.

Q2	Model Solution - $\mathbf{3 0}$ Marks	Marking Notes
(a)	$\begin{aligned} & f^{\prime}(x)=2 x+b \\ & f^{\prime}(3)=2(3)+b=0 \\ & b=-6 \end{aligned}$ $\begin{aligned} & f(3)=(3)^{2}-6(3)+c=-1 \\ & 9-18+c=-1 \\ & c=8 \end{aligned}$ OR $\begin{aligned} & x^{2}+b x+c=\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c \\ & -\frac{b}{2}=3 \text { so } b=-6 \\ & -\frac{b^{2}}{4}+c=-1 \text { so } c=8 \end{aligned}$ OR $\begin{aligned} f(x) & =(x-3)^{2}-1 \\ & =x^{2}-6 x+8 \end{aligned}$	Scale 15D (0, 4, 8, 12, 15) Low Partial Credit: - Work of merit, for example, $f(3)$ or some correct differentiation - Work of merit at completing the square - $(x-h)^{2}+k$ Mid Partial Credit: - b correct - Uses $f(3)$ to find a correct equation in b and c - $\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c$ - Work of merit in finding both b and c - $(x-3)^{2}+k$, where $k \neq-1$ - $(x-h)^{2}-1$, where $h \neq 3$ High Partial Credit - Finds b and work of merit in finding c - $(x-3)^{2}-1$
(b)	$\begin{aligned} & \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}+\frac{n+1000}{n}+\left(\frac{1}{3}\right)^{n}\right) \\ & =\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)+\lim _{n \rightarrow \infty}\left(\frac{n+1000}{n}\right)+\lim _{n \rightarrow \infty}\left(\left(\frac{1}{3}\right)^{n}\right) \\ & {\left[=\lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{1}{n}}\right)+\lim _{n \rightarrow \infty}\left(\frac{1+\frac{1000}{n}}{1}\right)+\lim _{n \rightarrow \infty}\left(\left(\frac{1}{3}\right)^{n}\right)\right]} \\ & =\frac{1}{1+0}+\frac{1+0}{1}+0 \\ & =2 \end{aligned}$	Scale 5C (0, 2, 3, 5) Note: Full credit for correct answer without work. Low Partial Credit: - Work of merit, for example, indicates sum of limits, divides by highest power of n in one of first two terms - Substitutes ∞ for n - Finds two or more terms of the sequence, $T_{n}=\frac{n}{n+1}+\frac{n+1000}{n}+\left(\frac{1}{3}\right)^{n}$ High Partial Credit: - One limit correctly evaluated and work of merit in any one of the other two limits

Q2	Model Solution - 30 Marks	Marking Notes
(c)		Scale 10C (0, 4, 7, 10) Low Partial Credit: - Work of merit in one part, for example, one point correctly transformed - In part (i) any vertical translation of $g(x)$ - In part (ii) any horizontal translation of $g(x)$ - In part (i) finds $g(x+2)$ or $g(x-2)$ - In part (ii) finds $g(x)-3$ or $g(x)+3$ High Partial Credit: - One part correct - Work of merit in both parts

Q3	Model Solution - 30 Marks	Marking Notes
(a)	Assume that $\sqrt{2}$ is rational. $\sqrt{2}=\frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$ and $\operatorname{HCF}(a, b)=1$ $2=\frac{a^{2}}{b^{2}}$ $2 b^{2}=a^{2}$ $\Rightarrow a^{2}$ is even If a^{2} is even, then a is even. $\therefore a=2 k$, where $k \in \mathbb{Z}$ $2 b^{2}=(2 k)^{2}$ $2 b^{2}=4 k^{2}$ $b^{2}=2 k^{2}$ $\therefore b^{2}$ is even If b^{2} is even, then b is even. If both a and b are even, then they have 2 as a common factor. This contradicts the assumption that $\operatorname{HCF}(a, b)=1$.	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - Work of merit, for example $\sqrt{2}=\frac{a}{b}$ - Work of merit in showing that a is even Mid Partial Credit: - Shows that a is even High Partial Credit - Shows both a and b are even
(b)	Method 1 $\begin{aligned} & \log _{3} t+\frac{\log _{3} t}{\log _{3} 9}+\frac{\log _{3} t}{\log _{3} 27}+\frac{\log _{3} t}{\log _{3} 81}=10 \\ & \log _{3} t+\frac{\log _{3} t}{2}+\frac{\log _{3} t}{3}+\frac{\log _{3} t}{4}=10 \\ & 12 \log _{3} t+6 \log _{3} t+4 \log _{3} t+3 \log _{3} t=120 \\ & 25 \log _{3} t=120 \\ & \log _{3} t=\frac{120}{25} \\ & t=3^{\frac{120}{25}}=3^{\frac{24}{5}} \end{aligned}$ OR Method 2 $\begin{aligned} & \frac{1}{\log _{\mathrm{t}} 3}+\frac{1}{\log _{\mathrm{t}} 9}+\frac{1}{\log _{\mathrm{t}} 27}+\frac{1}{\log _{\mathrm{t}} 81}=10 \\ & \frac{1}{\log _{\mathrm{t}} 3}+\frac{1}{2 \log _{\mathrm{t}} 3}+\frac{1}{3 \log _{\mathrm{t}} 3}+\frac{1}{4 \log _{\mathrm{t}} 3}=10 \\ & \frac{25}{12 \log _{\mathrm{t}} 3}=10 \\ & \log _{\mathrm{t}} 3=\frac{25}{120} \\ & t^{\frac{25}{120}}=3 \\ & t=3^{\frac{120}{25}} \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) 3 steps: 1.Changing all to the same base 2. Simplifies to an equation in \boldsymbol{t} with one log 3. Finds t Low Partial Credit: - Work of merit, for example, changes the base of one log (from the given equation) - Writes either 9, 27 or 81 in the form 3^{k} Mid Partial Credit: - One correct step High Partial Credit - 2 correct steps

Q3	Model Solution - $\mathbf{3 0}$ Marks	Marking Notes
(c) (i) (ii)	(i) Any valid explanation, for example: the power you need to raise 6 to, to get m. (ii) $\quad \log _{6} m>1$	Scale 10C (0, 4, 7, 10) Note: Accept $\mathbf{6}^{\boldsymbol{x}}=\boldsymbol{m}$ as a valid explanation for (i) Low Partial Credit: - Work of merit in (i) or (ii), for example, some reference to indices - $\log _{6} m>0$ or $\log _{6} m$ is positive High Partial Credit - (i) or (ii) correct

Q4	Model Solution - 30 Marks	Marking Notes
(a)	Method 1 $\begin{aligned} & (1+i)^{2}+(3-2 i)(1+i)+p=0 \\ & 1+2 i+i^{2}+3+i-2(i)^{2}+p=0 \\ & 5+3 i+p=0 \\ & p=-5-3 i \end{aligned}$ Method 2 Let the second root $=z_{2}$ Sum of roots: $\begin{aligned} 1+i+z_{2} & =-3+2 i \\ z_{2} & =-4+i \end{aligned}$ Product of roots: $\begin{aligned} & (1+i)(-4+i)=p \\ & p=-5-3 i \end{aligned}$ Method 3 $\begin{aligned} & z=\frac{-(3-2 i) \pm \sqrt{(3-2 i)^{2}-4 p}}{2} \\ & 2 z=-(3-2 i) \pm \sqrt{(3-2 i)^{2}-4 p} \\ & 2 z+3-2 i= \pm \sqrt{(3-2 i)^{2}-4 p} \\ & {[2 z+3-2 i]^{2}=(3-2 i)^{2}-4 p} \end{aligned}$ $z=1+i$ satisfies this equation $\begin{aligned} & {[2(1+i)+3-2 i]^{2}=(3-2 i)^{2}-4 p} \\ & 5^{2}=(3-2 i)^{2}-4 p \\ & 4 p=-20-12 i \\ & p=\frac{-20-12 i}{4} \\ & \quad=-5-3 i \end{aligned}$ Method 4 $\begin{aligned} & z+(4-i) \\ & \frac{z-1-i / z^{2}+(3-2 i) z+p}{(4-i) z+p} \\ & \frac{z^{2}-(1+i) z-5-3 i}{p+5+3 i} \\ & p+5+3 i=0 \\ & p=-5-3 i \end{aligned}$	Scale 5C (0, 2, 3, 5) Note: Any attempt involving the conjugate of $\mathbf{1}+\boldsymbol{i}$, award Low Partial Credit at most. Method 1 Low Partial Credit: - Work of merit, for example, some correct substitution or some correct multiplication High Partial Credit: - Fully correct substitution and multiplication Method 2 Low Partial Credit: - $z^{2}-($ sum $) z+$ product - States p is the product of the roots - Sum of the roots $=-3+2 i$ High Partial Credit: - Finds $2^{\text {nd }}$ root - States sum of the roots $=3-2 i$, but finishes correctly Method 3 Low Partial Credit: - Some correct substitution in the quadratic formula High Partial Credit: - Formula fully substituted and $1+i$ substituted for Z - Formula fully substituted and set equal to $1+i$ Method 4 Low Partial Credit: Sets up long division but divisor must be of the form $z-a+b i$, where $a=1$ and $b=-1$ (Accept $b=1$ here) High Partial Credit: - First cycle of long division done correctly.

Q4	Model Solution - 30 Marks	Marking Notes
(b)	Reference Angle: $\alpha=\tan ^{-1} \frac{\sqrt{3}}{1}=60^{\circ}\left(\frac{\pi}{3} \text { rads }\right)$ Argument: $\theta=180^{0}-60^{0}=120^{0}\left(\frac{2 \pi}{3} \text { rads }\right)$ Modulus: $\begin{aligned} r & =\sqrt{(-1)^{2}+(\sqrt{3})^{2}} \\ & =\sqrt{4} \\ & =2 \end{aligned}$ General Polar Form: $\begin{aligned} & 2\left(\cos \left(\frac{2 \pi}{3}+2 n \pi\right)+i \sin \left(\frac{2 \pi}{3}+2 n \pi\right)\right) \\ & w^{2}=2\left(\cos \left(\frac{2 \pi}{3}+2 n \pi\right)+i \sin \left(\frac{2 \pi}{3}+2 n \pi\right)\right) \\ & w=\left[2\left(\cos \left(\frac{2 \pi}{3}+2 n \pi\right)+i \sin \left(\frac{2 \pi}{3}+2 n \pi\right)\right)\right]^{\frac{1}{2}} \end{aligned}$ De Moivre: $\begin{aligned} w & =2^{\frac{1}{2}}\left[\left(\cos \frac{1}{2}\left(\frac{2 \pi}{3}+2 n \pi\right)+i \sin \frac{1}{2}\left(\frac{2 \pi}{3}+2 n \pi\right)\right)\right] \\ & =2^{\frac{1}{2}}\left[\cos \left(\frac{\pi}{3}+n \pi\right)+i \sin \left(\frac{\pi}{3}+n \pi\right)\right] \\ \underline{n} & =0: \\ w & =\sqrt{2}\left(\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right) \\ = & \sqrt{2}\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\ = & \frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2} i \\ \underline{n} & =1: \\ w & =\sqrt{2}\left(\cos \left(\frac{\pi}{3}+\pi\right)+i \sin \left(\frac{\pi}{3}+\pi\right)\right) \\ & =\sqrt{2}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2} i\right) \\ & =-\frac{\sqrt{2}}{2}-\frac{\sqrt{6}}{2} i \end{aligned}$	Scale 15D (0, 4, 8, 12, 15) Note: polar form must be used to achieve any credit. Note: Accept correct polar form without work (i.e., finding \boldsymbol{r} and $\boldsymbol{\theta}$) Note: if $\left(\boldsymbol{w}^{2}\right)^{2}$ is found, award Mid Partial Credit at most. Note: general polar form is not required to find the roots. Note: Accept solution in decimal form. 4 steps: 1. Finds θ 2. Finds r 3. One root evaluated from De Moivre's expression 4. $2^{\text {nd }}$ root found Low Partial Credit: - Work of merit, for example, plots $-1+\sqrt{3} i$ - Work of merit towards finding r or θ - $w=(-1+\sqrt{3} i)^{\frac{1}{2}}$ Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct Full Credit -1 - Roots found correctly, but one or both in polar form

Q4	Model Solution - 30 Marks	Marking Notes
(c) (i) (ii) (iii)	(i) $\begin{array}{l\|l} i u=i(a+b i) & \bar{u}=-b-a i \\ =a i+b i^{2} & \\ =-b+a i & \end{array}$ (ii) (iii) 90° counterclockwise rotation about the origin followed by axial symmetry in Re axis (x axis) Axial symmetry in the Im axis (y axis) followed by a 90° counterclockwise rotation about the origin. Axial symmetry in a line through the origin with slope -1 or similar	Scale 10D (0, 3, 5, 8, 10) Note: 4 elements required: $i u, \bar{u}$, plot, transformation Note: Accept conjugate plot from either candidate's work in (i) or by reflection of their \bar{u} in the real axis Low Partial Credit: - Work of merit in one element, for example, $i(a+b i)$ Mid Partial Credit - 1 element correct and work of merit in a $2^{\text {nd }}$ element High Partial Credit - 2 elements correct and work of merit in a $3^{\text {rd }}$ element Full Credit -1 - Diagram not labelled, otherwise correct

Q5	Model Solution - 30 Marks	Marking Notes
(a)	$\begin{aligned} f(x) & =\left(5 x^{2}+7\right)^{-1} \\ f^{\prime}(x) & =-1\left(5 x^{2}+7\right)^{-2}(10 x) \\ & =-10 x\left(5 x^{2}+7\right)^{-2} \\ f^{\prime}(x) & =\frac{-10 x}{\left(5 x^{2}+7\right)^{2}} \end{aligned}$ OR $\begin{aligned} u(x) & =1 \text { so } u^{\prime}(x)=0 \\ v(x) & =5 x^{2}+7 \text { so } v^{\prime}(x)=10 x \\ f^{\prime}(x) & =\frac{\left(5 x^{2}+7\right)(0)-1(10 x)}{\left(5 x^{2}+7\right)^{2}} \\ & =\frac{-10 x}{\left(5 x^{2}+7\right)^{2}} \end{aligned}$	Scale 15C (0, 6, 12, 15) Accept $-10 x\left(5 x^{2}+7\right)^{-2}$ for full credit. Low Partial Credit: - Some correct differentiation High Partial Credit: - Correct substitution into quotient rule - One error in substitution into quotient rule, but finishes correctly Full Credit - 1 - $f^{\prime}(x)=-1\left(5 x^{2}+7\right)^{-2}(10 x)$
(b)	$\begin{array}{ll} u=\tan \frac{x}{2} & v=\ln x \\ \frac{d u}{d x}=\frac{1}{2} \sec ^{2} \frac{x}{2} & \frac{d v}{d x}=\frac{1}{x} \\ g^{\prime}(x)=\left(\tan \frac{x}{2}\right)\left(\frac{1}{x}\right)+(\ln x)\left(\frac{1}{2} \sec ^{2} \frac{x}{2}\right) \end{array}$ At $x=\frac{\pi}{2}$: $\begin{aligned} & g^{\prime}(x)=\left(\tan \frac{\left(\frac{\pi}{2}\right)}{2}\right)\left(\frac{1}{\left(\frac{\pi}{2}\right)}\right)+\left(\ln \frac{\pi}{2}\right)\left(\frac{1}{2} \sec ^{2} \frac{\left(\frac{\pi}{2}\right)}{2}\right) \\ & =1\left(\frac{2}{\pi}\right)+\ln \frac{\pi}{2}\left(\frac{1}{2}(2)\right) \\ & =\frac{2}{\pi}+\ln \frac{\pi}{2} \end{aligned}$	Scale 5D (0, 2, 3, 4, 5) No differentiation no credit 4 steps 1. Finds $\frac{d u}{d x}$ 2. Finds $\frac{d v}{d x}$ 3. Applies the product rule correctly 4. Evaluates at $x=\frac{\pi}{2}$ Low Partial Credit: - Any correct differentiation Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct Full Credit-1 - Answer not in the correct form

Q5	Model Solution - 30 Marks	Marking Notes
$\begin{array}{\|l} \hline \text { (c) } \\ \text { (i) } \\ \text { (ii) } \end{array}$	(i) $g(f(3))=g(3)=w$ (ii) Injective: no element of C is used more than once or no two elements in B go to the same element, or any other valid reason. Not surjective: one element of C is not used, or Range $=$ Codomain, or $\# B<\# C$, or any other valid reason.	Scale 10D (0, 3, 5, 8, 10) Three parts to check: (i) and injective and not surjective. In part (i) accept $g(f(3))$, where g and f are the functions from part (b). Low Partial Credit: - Shows some understanding of injective or surjective functions. - Work of merit in any part, for example, $f(3)$ correct, merit in explanation of injective or surjective (e.g., in injective, $\# B \leq \# C$) Mid Partial Credit - One of the 3 parts correct High Partial Credit - Two parts correct

Q6	Model Solution - $\mathbf{3 0}$ Marks	Marking Notes
(a)(i)	$\begin{aligned} & x+4=x^{2}-2 \\ & x^{2}-x-6=0 \\ & (x-3)(x+2)=0 \\ & x=3, \quad x=-2 \end{aligned}$	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Work of merit, for example, equation correctly established High Partial Credit: - Factors correct - Quadratic formula fully substituted - One correct answer verified

Q6	Model Solution - 30 Marks	Marking Notes
(a)(ii)	Method 1 $\begin{gathered} f(x)-g(x)=x+4-\left(x^{2}-2\right) \\ =-x^{2}+x+6 \\ \text { Area }=\int_{-1}^{2}\left(-x^{2}+x+6\right) d x \\ =\left[-\frac{x^{3}}{3}+\frac{x^{2}}{2}+6 x\right]_{-1}^{2} \\ =\left(-\frac{(2)^{3}}{3}+\frac{2^{2}}{2}+6(2)\right)-\left(-\frac{(-1)^{3}}{3}+\frac{(-1)^{2}}{2}+6(-1)\right) \\ =\frac{33}{2}\left[\mathrm{units}^{2}\right] \end{gathered}$ OR Method 2 $\begin{array}{r} \text { Area } 1=\int_{-1}^{2}(x+4) d x \\ =\left[\frac{x^{2}}{2}+4 x\right]_{-1}^{2} \\ =\left[\left(\frac{(2)^{2}}{2}+(8)\right)-\left(\frac{(-1)^{2}}{2}+(-4)\right)\right] \\ =\frac{27}{2} \\ \text { Area }_{2}=\int_{-1}^{2}\left(x^{2}-2\right) d x \\ =\left[\frac{x^{3}}{3}-2 x\right] 2 \\ =\left[\left(\frac{(2)^{3}}{3}-2(2)\right)-\left(\frac{(-1)^{3}}{3}-2(-1)\right)\right] \\ =1-3 \mid \\ \text { Area }=\frac{27}{2}+3=\frac{33}{2}\left[\text { units }^{2}\right] \end{array}$ Method 3 x intercept of $g(x)$: $\begin{aligned} & x^{2}-2=0 \rightarrow x=\sqrt{2} \\ & A_{1}=\left\|\int_{-1}^{\sqrt{2}}\left(x^{2}-2\right) d x\right\|=\frac{4 \sqrt{2}+5}{3} \\ & A_{2}=\int_{\sqrt{2}}^{2}\left(x^{2}-2\right) d x=\frac{4 \sqrt{2}-4}{3} \\ & A_{3}=\int_{-1}^{2}(x+4) d x=\frac{27}{2} \end{aligned}$ Total Area $=\frac{4 \sqrt{2}+5}{3}+\frac{27}{2}-\left(\frac{4 \sqrt{2}-4}{3}\right)=\frac{33}{2}\left[\right.$ units $\left.^{2}\right]$	Scale 15D (0, 4, 8, 12, 15) Consider as 4 steps: 1. Integrate f 2. Integrate g 3. Combine 4. Evaluate with Limits They may do these in a different order, e.g., combine f and g and then integrate this function (= 3 steps) Low Partial Credit: - Integration indicated - Some correct integration - Sets up integration of original function(s) - Some work of merit towards finding an approximate area using the Trapezoidal Rule - Work of merit towards finding x intercept of $g(x)$ - $f(-1)$ or $f(2)$ found Mid Partial Credit: - 2 steps correct - 1 relevant area calculated High Partial Credit: - 2 relevant areas calculated correctly - Steps 1 and 2 correct and one relevant area calculated - 3 steps correct Full Credit -1 - Area $=-16.5$

Q6	Model Solution - 30 Marks	Marking Notes
(b)	$\begin{aligned} & {\left[b\left(\frac{1}{b} e^{b x}\right)\right]_{0}^{b}=e} \\ & \left(e^{b(b)}-e^{b(0)}\right)=e \\ & e^{b^{2}}-1=e \\ & e^{b^{2}}=e+1 \\ & b^{2}=\ln (e+1) \\ & b=\sqrt{\ln (e+1)}=1 \cdot 15 \ldots . \end{aligned}$	Scale 5D (0, 2, 3, 4, 5) Note: if there is an error in integration, max of Mid Partial Credit is awarded and only if both limits are substituted correctly Low Partial Credit: - Some correct integration, for example, $k e^{b x}(k \neq 1)$ appears without the integral sign - $+C$ Mid Partial Credit: - Fully correct integration High Partial Credit: - $e^{b^{2}}-1=e$

Q7	Model Solution - 50 Marks	Marking Notes
(a)	$v(0)=\frac{2}{3}(0)^{3}-6(0)^{2}+13(0)+109$ $v(0)=109 \mathrm{~km} / \mathrm{hr}$	Scale 5B $(\mathbf{0}, \mathbf{2 , 5} \mathbf{5})$ Accept correct answer without work. Partial Credit: • Some correct substitution • Identifies $t=0$ • Substitutes $t=5$
(b)	$v^{\prime}(t)=2 t^{2}-12 t+13$ $v^{\prime}(5)=2(5)^{2}-12(5)+13$ $=3[\mathrm{~km} / \mathrm{hr} / \mathrm{min}]$ \bullet No unit or incorrect unit	

Q7	Model Solution - 50 Marks	Marking Notes
(c)	Maximum speed when $v^{\prime}(t)=0$ $\begin{aligned} & 2 t^{2}-12 t+13=0 \\ & t=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(2)(13)}}{2(2)} \\ & t=4 \cdot 58 \text { or } t=1 \cdot 42 \end{aligned}$ Maximum at $t=1.42$ [as coefficient of $t^{3}>0$ and domain of interest is $[0,4]$, with local min at $t=4 \cdot 58]$ OR $\begin{aligned} & {\left[v^{\prime \prime}(t)=4 t-12\right.} \\ & v^{\prime \prime}(1.42)<0 \\ & \Rightarrow \text { maximum at } t=1.42] \end{aligned}$	Scale 10C (0, 4, 7, 10) Note: Accept candidate's derivative from part (b) Note: If candidate's derivative is linear, award Low Partial Credit at most 3 steps: 1. $v^{\prime}(t)=0$ 2. Substitutes into formula 3. Evaluates for t Low Partial Credit: - Work of merit in finding $v^{\prime}(t)$ or brings $v^{\prime}(t)$ from (b) - States $v^{\prime}(t)=0$ or similar - $v^{\prime \prime}(t)$ appears High Partial Credit: - 2 steps correct Full Credit -1 - $t=4.58$ written down and not explicitly excluded - Rounded incorrectly or no rounding, otherwise correct

Q7	Model Solution - 50 Marks	Marking Notes
(d)	$\begin{aligned} & \frac{1}{5-0}\left[\int_{0}^{5}\left(\frac{2}{3} t^{3}-6 t^{2}+13 t+109\right) d t\right] \\ & =\frac{1}{5}\left[\frac{t^{4}}{6}-2 t^{3}+\frac{13 t^{2}}{2}+109 t\right]_{0}^{5} \\ & =\frac{1}{5}\left[\left(\frac{(5)^{4}}{6}-2(5)^{3}+\frac{13(5)^{2}}{2}+109(5)\right)-(0)\right] \\ & =112 \cdot 333 \ldots \mathrm{~km} / \mathrm{hr} \\ & =112 \cdot 33 \mathrm{~km} / \mathrm{hr}[2 \mathrm{~d} . \mathrm{p} .] \end{aligned}$	Scale 10D (0, 3, 5, 8, 10)
		Note: Indication of integration is required to be awarded any credit 4 steps:
		Note: If $\frac{1}{5}$ is omitted, treat step 1 as not fully correct, but all other steps can be accepted as correct
		Note: If speed is treated as $\boldsymbol{v}^{\prime}(\boldsymbol{t})$ in (a) a correct solution must include the line, $\frac{1}{5}\left[\int_{0}^{5} v^{\prime}(t) d t\right]$
		1. $\frac{1}{5}\left[\int_{0}^{5} v(t) d t\right]$ 2. Integrates correctly 3. Subs in limits
		4. Evaluates correctly
		Low Partial Credit: - Work of merit, for example, integration indicated
		Mid Partial Credit: - 2 steps correct
		High Partial Credit - 3 steps correct
		Full Credit -1 - Rounded incorrectly or no
		rounding, otherwise correct - Incorrect unit or no unit, otherwise correct

Q7	Model Solution - 50 Marks	Marking Notes
(e)	Answer: B Justification: $v^{\prime}(1)>0$ Function is increasing so the slope is positive. $v^{\prime \prime}(1)<0$ Rate of increase is slowing. OR The slope is decreasing.	Scale 5C (0, 2, 3, 5) Note: Justification needs to explicitly deal with both \boldsymbol{v}^{\prime} and $\boldsymbol{v}^{\prime \prime}$, but can be a single combined sentence. Note: Substitution into $\boldsymbol{v}^{\prime}(\boldsymbol{t})$ or $\boldsymbol{v}^{\prime \prime}(\boldsymbol{t})$ is not considered work of merit. Note: Accept "the function is concave down", or similar as a justification using $\boldsymbol{v}^{\prime \prime}(\mathbf{1})<\mathbf{0}$ 3 elements required: 1. Answer B 2. Justification for $\boldsymbol{v}^{\prime}(\mathbf{1})>\mathbf{0}$ 3. Justification for $\boldsymbol{v}^{\prime \prime}(\mathbf{1})<\mathbf{0}$ Low Partial Credit: - Answer correct - Work of merit in either justification High Partial Credit: - 2 elements correct - Answer given as B or D, justified correctly using $v^{\prime}(1)$ - Answer given as B justified correctly using $v^{\prime \prime}(1)$ - Answer given as A justified correctly using $v^{\prime \prime}(1)$ - No answer given, but 2 justifications are correct

(f)	Time $=$ Distance $/$ Speed $=\frac{10}{100}=6$ [minutes]	Scale 5B (0, 2, 5) Note: Accept correct answer without units Partial Credit: - Work of merit in finding time Full Credit-1 - $1 / 10$ (i.e. incorrect unit)
(g)	$120 \mathrm{~km} / \mathrm{hr}$ for 2 minutes: Distance $=120 \times \frac{2}{60}=4 \mathrm{~km}$ $10-4=6 \mathrm{~km}$ remaining to get to B Average Speed: $\begin{aligned} & \frac{10}{\text { total time }}=100 \\ & \text { total time } \end{aligned}=\frac{1}{10} \mathrm{hrs}, \begin{aligned} & \\ &=6 \text { minutes } \end{aligned}$ $\Rightarrow 4$ minutes remaining to get to B Average speed for last 6 km : Avg Speed $=6 \div\left(\frac{1}{15}\right)=90 \mathrm{~km} / \mathrm{hr}$ $\frac{120+v}{2}=90$, where v is the speed at B $v=60 \mathrm{~km} / \mathrm{hr}$ Decelerates from 120 to 60 over 4 minutes. So, deceleration $=15 \mathrm{~km} / \mathrm{hr}$ per minute OR Average speed for last $6 \mathrm{~km}: \frac{120+v}{2}$, where v is the speed at B $\begin{aligned} \text { Distance } & =\left(\frac{120+v}{2}\right) \times \text { time } \\ 6 & =\left(\frac{(120+v)}{2}\right) \times \frac{4}{60} \\ v & =60 \end{aligned}$ Decelerates from 120 to 60 over 4 minutes. Deceleration $=15 \mathrm{~km} / \mathrm{hr}$ per minute OR Average speed for the last 6km: $\begin{aligned} \frac{1}{4} \int_{0}^{4}(120-a t) d t & =90 \\ \frac{1}{4}\left[120 t-\frac{1}{2} a t^{2}\right]_{0}^{4} & =90 \\ \frac{1}{4}\left[120(4)-\frac{1}{2} a(4)^{2}\right] & =90 \\ 120-2 a & =90 \\ a & =15 \mathrm{kmh}^{-1} \text { per minute } \end{aligned}$	Scale 5D (0, 2, 3, 4, 5) Accept - $15 \mathrm{~km} / \mathrm{hr} / \mathrm{min}$ Low Partial Credit: - Some correct substitution in relation to distance for first 2 minutes or time / distance for remaining part - Indicates integration Mid Partial Credit: - Identifies $4 \mathrm{~km}, 6 \mathrm{~km}$ or 4 minutes. High Partial Credit - Calculates $60 \mathrm{~km} / \mathrm{hr}$ after the extra 4 minutes or $90 \mathrm{~km} / \mathrm{hr}$ after extra 2 minutes. Full Credit -1 - Answer in km/hr/hr

Q8	Model Solution - 50 Marks	Marking Notes
(a)	$\begin{aligned} F & =3000(1+0.024)^{5} \\ & =€ 3377.70 \end{aligned}$	Scale 5B (0, 2, 5) Partial Credit: - Work of merit, for example, some correct substitution into relevant formula; finds 2.4% as a decimal
(b) (i), (ii)	(i) It is the amount that should be invested today to amount to $€ 1000$ in 1 years' time at the particular interest rate. $\begin{aligned} & \text { (ii) } 4000=P(1+0.024)^{6} \\ & \quad \frac{4000}{1.024^{6}}=P \\ & P=€ 3469 \cdot 45 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Note: In (i) Accept $\boldsymbol{P}=\frac{\mathbf{1 0 0 0}}{(1+i)}$ Low Partial Credit: - Work of merit in (i) or (ii), for example, formula in (i), correct substitution into relevant formula in (ii) - 2.4% written as a decimal Mid Partial Credit: - (i) or (ii) correct - Work of merit in both parts High Partial Credit - One part correct and work of merit in the other part
(c)	$\begin{gathered} \hline 1 \cdot 024=(1+i)^{4} \\ (1.024)^{\frac{1}{4}}=1+i \\ (1.024)^{\frac{1}{4}}-1=i \\ 0 \cdot 005947 . .=i \\ \text { Rate }=0 \cdot 59 \% \end{gathered}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Some correct substitution into relevant formula - 2.4% written as a decimal High Partial Credit: - $(1.024)^{\frac{1}{4}}=1+i$ - Evaluates correctly $i=(1.024)^{4}-1$ - Uses 3 or 12 instead of 4 , but otherwise correct Full Credit -1 - Answer given as a decimal

Q8	Model Solution - 50 Marks	Marking Notes
(d) (i) (ii)	(i) $\begin{aligned} A(1 \cdot 0011)^{36} & +A(1 \cdot 0011)^{35}+\cdots \\ & \ldots+A(1 \cdot 0011)^{2}+A(1 \cdot 0011) \end{aligned}$ OR $\begin{aligned} =A\left[(1 \cdot 0011)^{36}\right. & +(1 \cdot 0011)^{35}+\cdots \\ & \left.\ldots+(1 \cdot 0011)^{2}+(1 \cdot 0011)\right] \end{aligned}$ (ii) $\begin{aligned} & A\left[1 \cdot 0011+(1 \cdot 0011)^{2}+\cdots\right. \\ & \left.\ldots+(1 \cdot 0011)^{35}+(1 \cdot 0011)^{36}\right] \\ & a=1 \cdot 0011, \quad r=1 \cdot 0011, \quad n=36 \\ & A\left[\frac{1 \cdot 0011\left(1-1 \cdot 0011^{36}\right)}{1-1 \cdot 0011}\right]=12000 \\ & A=\frac{12000}{\frac{1 \cdot 0011\left(1-1 \cdot 0011^{36}\right)}{1-1 \cdot 0011}} \\ & A=€ 326 \cdot 60[2 \text { D.P. }] \end{aligned}$	Scale 15D (0, 4, 8, 12, 15) Consider as requiring 3 steps: 1. Finds geometric series 2. Substitutes into geometric formula 3. Finds A Low Partial Credit: - Work of merit in either part, for example, in (i)Writes 0.11% as a decimal; in (ii), sets answer in (i) equal to 12000 Mid Partial Credit: - 1 step correct - Substantial work of merit in both parts High Partial Credit: - 2 steps correct Full Credit -1: - Correct solution, but excludes second and/or second last term - Investments made at the end of each month, otherwise correct
(e)	$\begin{aligned} & E(x)=11(0 \cdot 52)+(x-5)(0 \cdot 15) \\ & \quad \quad+x(0 \cdot 33)=13 \cdot 85 \\ & \\ & 0 \cdot 15 x+0 \cdot 33 x=13 \cdot 85-5 \cdot 72+0 \cdot 75 \\ & 0 \cdot 48 x=8 \cdot 88 \\ & x=€ 18 \cdot 50 \end{aligned}$	Scale 10C (0, 4, 7, 10) Low Partial Credit: - Work of merit, for example, some correct term in $E(x)$ High Partial Credit - Fully correct equation
(f)	Cost Price $=82 \%$ of Selling Price Profit $=18 \%$ of Selling Price Mark-up $=\frac{0.18}{0.82} \times 100$ $=0 \cdot 2195=22 \% \quad$ [nearest percent] OR Let $x=$ selling price and $y=$ cost price $\frac{x-y}{x}=0.18 \rightarrow y=0.82 x$ Mark up: $\frac{x-y}{y}=\frac{x-0.82 x}{0.82 x}=\frac{9}{41}$ Mark up: $\begin{aligned} & \frac{9}{41} \times 100=21.95 \\ & =22 \% \text { [nearest percent] } \end{aligned}$	Scale 5B (0, 2, 5) Partial Credit: - Work of merit, for example, states CP $=82 \%$ of $S P$ - Mentions 82% - Finds 18% of a number

(c)(ii)	y-intercept: $\begin{aligned} & y=-\frac{12}{p^{2}}(0)+\frac{24}{p} \\ & y=\frac{24}{p} \\ & \left(0, \frac{24}{p}\right) \end{aligned}$ $\text { height }=\frac{24}{p}$ x-intercept: $\begin{aligned} & 0=-\frac{12}{p^{2}} x+\frac{24}{p} \\ & \frac{12}{p^{2}} x=\frac{24}{p} \\ & \frac{12}{p} x=24 \\ & x=2 p \\ & \begin{aligned} (2 p, 0) \end{aligned} \\ & \text { base }=2 p \\ & \text { Area }=\frac{1}{2}(2 p)\left(\frac{24}{p}\right) \\ & \quad=24 \text { units }^{2} \end{aligned}$ x intercept $(2 p, 0)$ $\begin{aligned} & \int_{0}^{2 p}\left(-\frac{12}{p^{2}} x+\frac{24}{p}\right) d x \\ & =\left(-\frac{12 x^{2}}{2 p^{2}}+\frac{24 x}{p}\right)_{0}^{2 p} \\ & =-24+48 \\ & =24\left[\text { units }^{2}\right] \end{aligned}$	Scale 5D (0, 2, 3, 4, 5) Method 1 4 steps: 1. Finds the x-intercept 2. Finds the y-intercept 3. Substitution into area formula 4. Finds k Note: Accept where candidates substitute a value for p into the equation of the tangent, find both intercepts of the subsequent equation, and then find k Low Partial Credit: - Work of merit, for example, lets $x=0$ or $y=0$ Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct Method 2 1. Finds x intercept 2. Integrates the function 3. Substitutes limits 4. Finds k Low Partial Credit: - Work of merit, for example, lets $y=0$ - Indicates integration Mid Partial Credit - 2 steps correct High Partial Credit - 3 steps correct

Q10	Model Solution - 50 Marks	Marking Notes
(a)	Scale 5B (0, 2, 5) Partial Credit: - Work of merit, for example, each rectangle of height 2 units	

Q10	Model Solution - 50 Marks	Marking Notes
(c)	Method 1 $T_{4}=\frac{8}{4}\left[\frac{2}{4}+\frac{4}{4}+\frac{6}{4}+\frac{8}{4}\right]$ Similarly, $\begin{aligned} & T_{n}=\frac{8}{n}\left[\frac{2}{n}+\frac{4}{n}+\cdots+\frac{2 n}{n}\right] \\ & =\frac{8}{n^{2}}[2+4+6+\cdots+2 n] \end{aligned}$ $2+4+\cdots+2 n$ is an A.P. with $a=2$ and $d=2$ and n terms $\begin{aligned} S_{n} & =\frac{n}{2}[2(2)+(n-1)(2)] \\ & =n(n+1) \\ T_{n} & =\frac{8}{n^{2}}[n(n+1)] \\ & =\frac{8}{n}(n+1) \end{aligned}$ or equivalent Method 2 Total area = area of given triangle plus sum of areas of small triangles. $h=\frac{8}{n}$ $2 n$ small triangles Base of each small $\Delta=\frac{2}{2 n}=\frac{1}{n}$ Area of small $\Delta^{\prime} s=2 n \times \frac{1}{2} \times \frac{1}{n} \times \frac{8}{n}$ $=\frac{8}{n}$ $\begin{gathered} \text { Area }=\left(\frac{8}{n}\right)+\left(\frac{1}{2} \times 2 \times 8\right) \\ =\frac{8}{n}+8 \end{gathered}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Work of merit, for example, work towards establishing pattern by writing $T_{k}, k \neq 3$ - $\frac{8}{n}$ mentioned as height of rectangle - Identifies $2 n$ (or n) small triangles - Base length of each small triangle found High Partial Credit: - $T_{n}=\frac{8}{n}\left[\frac{2}{n}+\frac{4}{n}+\cdots+\frac{2 n}{n}\right]$ or equivalent not in closed form - Finds sum of the areas of the small triangles

Q10	Model Solution - 50 Marks	Marking Notes
(d)	$\begin{aligned} & \frac{8(n-1)}{n}>0 \cdot 95(8) \\ & \frac{n-1}{n}>0 \cdot 95 \\ & n-1>0 \cdot 95 n \\ & 0 \cdot 05 n>1 \\ & n>20 \\ & n=21 \\ & \frac{8 n^{2}(n-1)}{n}>0.95(8) n^{2} \\ & 8 n^{2}-7.6 n^{2}-8 n>0 \\ & 0.4 n^{2}-8 n>0 \\ & n^{2}-20 n>0 \\ & n(n-20)>0 \\ & n>20 \\ & n=21 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Note: where candidates multiply both sides by n^{2}, they must find $n=20$ to be awarded High Partial Credit. Low Partial Credit: - Work of merit in establishing inequality, for example, finds the area of triangle Mid Partial Credit - Forms the correct inequality High Partial Credit - $n-1>0 \cdot 95 n$
(e) (i)		Scale 10C (0, 4, 7, 10) Low Partial Credit: - Integral set up correctly High Partial Credit - Integration is correct - Mishandles $\frac{c^{2}}{h^{2}}$, but otherwise correct.

Q10	Model Solution - 50 Marks	Marking Notes
(e)(ii)	$\begin{aligned} & \frac{d x}{d t}=3 \quad \frac{d S}{d t}=\frac{d S}{d x} \times \frac{d x}{d t} \\ & S(x)=\frac{x^{2} c^{2}}{h^{2}} \\ & \frac{d S}{d x}=\frac{c^{2}}{h^{2}}(2 x) \\ & \frac{d S}{d t}=\frac{c^{2}}{h^{2}}(2 x)(3) \\ & =\frac{6 c^{2} x}{h^{2}} \\ & \text { When } x=\frac{h}{2} \\ & \frac{d S}{d t}=\frac{6 c^{2}\left(\frac{h}{2}\right)}{h^{2}}=\frac{3 c^{2}}{h} \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - States a relevant derivative, for example, $\frac{d S}{d x}$ or $\frac{d S}{d t}$ - $x=\frac{h}{2}$ - Some correct differentiation Mid Partial Credit - Any two of the following: - $\frac{d x}{d t}=3$ - $x=\frac{h}{2}$ - $\frac{d S}{d x}=\frac{c^{2}}{h^{2}}(2 x)$ - $\frac{d s}{d t}=\frac{d S}{d x} \times \frac{d x}{d t}$ or similar High Partial Credit - $\frac{d s}{d t}=\frac{d s}{d x} \times \frac{d x}{d t}$, and any two others from the MPC list above

