

Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate 2023

Marking Scheme

Mathematics

Higher Level

Note to teachers and students on the use of published marking schemes

Marking schemes published by the State Examinations Commission are not intended to be standalone documents. They are an essential resource for examiners who receive training in the correct interpretation and application of the scheme. This training involves, among other things, marking samples of student work and discussing the marks awarded, so as to clarify the correct application of the scheme. The work of examiners is subsequently monitored by Advising Examiners to ensure consistent and accurate application of the marking scheme. This process is overseen by the Chief Examiner, usually assisted by a Chief Advising Examiner. The Chief Examiner is the final authority regarding whether or not the marking scheme has been correctly applied to any piece of candidate work.

Marking schemes are working documents. While a draft marking scheme is prepared in advance of the examination, the scheme is not finalised until examiners have applied it to candidates' work and the feedback from all examiners has been collated and considered in light of the full range of responses of candidates, the overall level of difficulty of the examination and the need to maintain consistency in standards from year to year. This published document contains the finalised scheme, as it was applied to all candidates' work.

In the case of marking schemes that include model solutions or answers, it should be noted that these are not intended to be exhaustive. Variations and alternatives may also be acceptable. Examiners must consider all answers on their merits, and will have consulted with their Advising Examiners when in doubt.

Future Marking Schemes

Assumptions about future marking schemes on the basis of past schemes should be avoided. While the underlying assessment principles remain the same, the details of the marking of a particular type of question may change in the context of the contribution of that question to the overall examination in a given year. The Chief Examiner in any given year has the responsibility to determine how best to ensure the fair and accurate assessment of candidates' work and to ensure consistency in the standard of the assessment from year to year. Accordingly, aspects of the structure, detail and application of the marking scheme for a particular examination are subject to change from one year to the next without notice. Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Examination 2023

Mathematics

Higher Level

Paper 1

Marking scheme

300 marks

Marking Scheme – Paper 1, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	A	В	С	D
No of categories	2	3	4	5
5 mark scales	0, 5	0, 2, 5	0, 2, 3, 5	0, 2, 3, 4, 5
10 mark scales	0, 10	0, 5, 10	0, 4, 7, 10	0, 3, 5, 8, 10
15 mark scales			0, 6, 12, 15	0, 4, 8, 12, 15
20 mark scales				0, 5, 10, 15, 20

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

Section A		Section B	
Question 1	(30 marks)	Question 7	(50 marks)
(a)	15D	(a)	5B
(b)	10D	(b)	10C
(c)	5D	(c)	10C
		(d)	10D
Question 2	(30 marks)	(e)	5C
(a)	15D	(f)	5B
(b)	5C	(g)	5D
(c)(i)(ii)	10C		
		Question 8	(50 marks)
Question 3	(30 marks)	(a)	5B
(a)	10D	(b)(i)(ii)	10D
(b)(i)	10D	(c)	5C
(b)(ii)	10C	(d)(i)(ii)	15D
		(e)	10C
Question 4	(30 marks)	(f)	5B
(a)	5C		
(b)	15D	Question 9	(50 marks)
(c)(i)(ii)(iii)	10D	(a)(i)(ii)(iii)	15D
		(b)(i)(ii)(iii)	20D
		(c)(i)	10D
Question 5	(30 marks)	(c)(ii)	5D
(a)	15C		
(b)	5D		
(c)(i)(ii)	10D	Question 10	(50 marks)
		(a)	5B
Question 6	(30 marks)	(b)	10C
(a)(i)	10C	(c)	5C
(a)(ii)	15D	(d)	10D
(b)	5D	e(i)	10C
		e(ii)	10D

Symbol Meaning in the body of the work Meaning when used in the right margin Name The work presented in the body of the Tick Work of relevance script merits full credit Incorrect work The work presented in the body of the Cross script merits 0 credit (distinct from an error) Rounding / Unit / Arithmetic Star error / Misreading $\sim\sim$ Horizontal wavy Error The work presented in the body of the Ρ Ρ script merits Partial Credit The work presented in the body of the L L script merits Low Partial Credit The work presented in the body of the М Μ script merits Mid Partial Credit The work presented in the body of the Н Н script merits High Partial Credit The work presented in the body of the F* F star script merits Full Credit - 1 Another version of this solution is ſ presented elsewhere and it merits equal Left Bracket or higher credit No work on this page / portion of Ş Vertical wavy this page The candidate has oversimplified 0 Oversimplify the work The candidate has produced work MOM Work of merit of merit (in line with that defined in the scheme) The candidate has stopped early ຂ Stops early in this part

Palette of annotations available to examiners

Note: Where work of substance is presented in the body of the script, the annotation on the right margin should reflect a combination of annotations in the work.		
In a C scale that is not marked using steps, where $*$ and $\overline{\sim\!\sim\!\sim\!}$ and $\overline{\sim\!\sim\!\sim\!}$ appear in the body of the		
work, then L should be placed in the right margin.		
In the case of a D scale with the same annotations, M should be placed in the right margin.		

Detailed marking notes

Model Solutions & Marking Notes

Note: The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Q1	Model Solution –30	Marks	Marking Notes
(a)	Method 1:		Scale 15D (0, 4, 8, 12, 15)
			Method 1
	5 + 3m = 11	5 + 3m = -11	Low Partial Credit:
	3m = 6	3m = -16	• 1 linear equation.
	<i>m</i> = 2	$m = -\frac{16}{3}$	 One correct value of <i>m</i> found without work. Attempts at trial and
		OR	improvement.
	Method 2: $(5 + 3m)^2 = 11^2$ $25 + 30m + 9m^2 =$ $9m^2 + 30m - 96 =$ $3m^2 + 10m - 32 =$ (3m + 16)(m - 2) $m = -\frac{16}{3}, m = 2$: 121 : 0 : 0	 Mid Partial Credit: One value of <i>m</i> found with work. High Partial Credit One value of <i>m</i> correctly found and work of merit in finding the second value. Method 2 Note: If quadratic does not have an <i>m</i> term award Mid Partial Credit at most Low Partial Credit: Indication of squaring Mid Partial Credit: relevant quadratic in <i>m</i> expanded (Line 2 of the solution) Quadratic is missing the <i>m</i> term, otherwise correct High Partial Credit quadratic factorised quadratic formula fully substituted

Q1	Model Solution –30 Marks	Marking Notes
(b)	j + k = hk	Scale 10D (0, 3, 5, 8, 10)
	j + k = hk $k - hk = -j$	Low Partial Credit:
	k(1-h) = -j	Work of merit in eliminating
	$k = -\frac{j}{1-h}$ or $k = \frac{j}{h-1}$	fractions Mid Partial Credit
		• Terms with k transposed to one side of the equation
		High Partial Credit
		• $k(1-h) = -j$ or equivalent

Q1	Model Solution –30 Mar	ks	Marking Notes
(c)	Method 1		Scale 5D (0, 2, 3, 4, 5)
	x + p		Note: Full credit -1 if $oldsymbol{p}=\sqrt{3}$ but
	$x^2 - px + 1/\overline{x^3 + 0x^2 - 2}$	2x-3r	otherwise correct
	$x^3 - px^2 - p$	- <u>x</u>	Method 1
	$px^2 - 3x$		4 steps:
	$\frac{px^2 - p^2}{px^2 - p^2}$		1. Sets up long division
		$\frac{x-p}{x-3r-p}$	2. First cycle in long division correct
	(p 3)	x 31 p	3. Value of $oldsymbol{p}$ found
			4. Value of <i>r</i> found
l	1	-3r - p = 0	Low Partial Credit:
	$p^2 = 3$	$-3r - \left(-\sqrt{3}\right) = 0$	Work of merit, for example, some
	$p = -\sqrt{3} [p < 0]$	$\sqrt{3} = 3r$	correct division, or sets up long
		$r = \frac{\sqrt{3}}{2}$	division.
		$r = \frac{1}{3}$	Mid Partial Credit:
	C	R	2 steps correct
	Method 2		High Partial Credit
l	$(x^2 - px + 1)(x + k) = x$	3 - 2x - 3r	 3 steps correct
			Method 2
	$x^3 - px^2 + x + kx^2 - pkx$	$x + k = x^3 - 2x - 3r$	4 steps:
l	$x^{3} + (k - p)x^{2} + (1 - pk)$	$(x + k) = r^3 - 2r - 3r$	1. Equation set up
		,	2. Expansion of the product (Allow
	$k - p = 0 \qquad 1 - pk = -2$	k = -3r	with 3 or more terms correct)
	k - p = 0 $1 - pk = -2k = p 1 - p^2 = -2$	k	3. Value of p found
	$\kappa = p$ $1 p = 2$	$r = -\frac{\pi}{3}$	4. Value of r found
	$p^2 = 3$	$-\sqrt{3}$	Low Partial Credit:
	$p = -\sqrt{3} [p]$	$< 0] \qquad \qquad = -\frac{-\sqrt{3}}{3}$	• Work of merit, for example,
		$\sqrt{3}$	mentions linear factor
		$=\frac{\sqrt{3}}{3}$	Mid Partial Credit:
	OR		• 2 steps correct
		ν Γ	High Partial Credit
	Method 3		• 3 steps correct.
			Method 3
	x	-3r	1. Grid set up
	x^2 x^3	$-3rx^2$	2. Grid completed (Allow with 3 or
	$-px$ $-px^2$	+3rpx	more terms correct)
			3. Value of <i>p</i> found
	+1 x	-3r	4. Value of <i>r</i> found
		1	Low Partial Credit:
	-p - 3r = 0	1 + 3rp = -2	• Work of merit, for example,
	p = -3r	rp = -1	mentions linear factor.
	$r = -\frac{p}{3}$	$-\frac{p}{3}(p) = -1$	Mid Partial Credit:
	, _ 3	$p^2 = 3$	• 2 steps correct.
		I	
		$p = -\sqrt{3} \ [p < 0]$	High Partial Credit
		$r = \frac{\sqrt{3}}{3}$	3 steps correct.
		[9]	

Q2	Model Solution – 30 Marks	Marking Notes
(a)	f'(x) = 2x + b f'(3) = 2(3) + b = 0 b = -6 $f(3) = (3)^2 - 6(3) + c = -1$ 9 - 18 + c = -1 c = 8 OR $x^2 + bx + c = \left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c$ $-\frac{b}{2} = 3 \text{ so } b = -6$ $-\frac{b^2}{4} + c = -1 \text{ so } c = 8$ OR $f(x) = (x - 3)^2 - 1$ $= x^2 - 6x + 8$	Scale 15D (0, 4, 8, 12, 15) Low Partial Credit: • Work of merit, for example, f(3) or some correct differentiation • Work of merit at completing the square • $(x - h)^2 + k$ Mid Partial Credit: • b correct • Uses $f(3)$ to find a correct equation in b and c • $\left(x + \frac{b}{2}\right)^2 - \frac{b^2}{4} + c$ • Work of merit in finding both b and c • $(x - 3)^2 + k$, where $k \neq -1$ • $(x - h)^2 - 1$, where $h \neq 3$ High Partial Credit • Finds b and work of merit in finding c • $(x - 3)^2 - 1$
(b)	$\lim_{n \to \infty} \left(\frac{n}{n+1} + \frac{n+1000}{n} + \left(\frac{1}{3}\right)^n \right)$ $= \lim_{n \to \infty} \left(\frac{n}{n+1} \right) + \lim_{n \to \infty} \left(\frac{n+1000}{n} \right) + \lim_{n \to \infty} \left(\left(\frac{1}{3}\right)^n \right)$ $\left[= \lim_{n \to \infty} \left(\frac{1}{1+\frac{1}{n}} \right) + \lim_{n \to \infty} \left(\frac{1+\frac{1000}{n}}{1} \right) + \lim_{n \to \infty} \left(\left(\frac{1}{3}\right)^n \right) \right]$ $= \frac{1}{1+0} + \frac{1+0}{1} + 0$ $= 2$	Scale 5C (0, 2, 3, 5) Note: Full credit for correct answer without work. Low Partial Credit: • Work of merit, for example, indicates sum of limits, divides by highest power of n in one of first two terms • Substitutes ∞ for n • Finds two or more terms of the sequence, $T_n = \frac{n}{n+1} + \frac{n+1000}{n} + \left(\frac{1}{3}\right)^n$ High Partial Credit: • One limit correctly evaluated and work of merit in any one of the other two limits

Q3	Model Solution – 30 Marks	Marking Notes
(a)	Assume that $\sqrt{2}$ is rational. $\sqrt{2} = \frac{a}{b}$ where $a, b \in \mathbb{Z}, b \neq 0$ and HCF $(a, b) = 1$ $2 = \frac{a^2}{b^2}$ $2b^2 = a^2$ $\Rightarrow a^2$ is even If a^2 is even, then a is even. $\therefore a = 2k$, where $k \in \mathbb{Z}$ $2b^2 = (2k)^2$ $2b^2 = 4k^2$ $b^2 = 2k^2$ $\therefore b^2$ is even If b^2 is even, then b is even. If both a and b are even, then they have 2 as a common factor. This contradicts the assumption that HCF $(a, b) = 1$.	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: • Work of merit, for example $\sqrt{2} = \frac{a}{b}$ • Work of merit in showing that a is even Mid Partial Credit: • Shows that a is even High Partial Credit • Shows both a and b are even
(b)	Method 1 $\log_{3} t + \frac{\log_{3} t}{\log_{3} 9} + \frac{\log_{3} t}{\log_{3} 27} + \frac{\log_{3} t}{\log_{3} 81} = 10$ $\log_{3} t + \frac{\log_{3} t}{2} + \frac{\log_{3} t}{3} + \frac{\log_{3} t}{4} = 10$ $12\log_{3} t + 6\log_{3} t + 4\log_{3} t + 3\log_{3} t = 120$ $25\log_{3} t = 120$ $\log_{3} t = \frac{120}{25}$ $t = 3^{\frac{120}{25}} = 3^{\frac{24}{5}}$ OR Method 2 $\frac{1}{\log_{t} 3} + \frac{1}{\log_{t} 9} + \frac{1}{\log_{t} 27} + \frac{1}{\log_{t} 81} = 10$ $\frac{1}{\log_{t} 3} + \frac{1}{2\log_{t} 3} + \frac{1}{3\log_{t} 3} + \frac{1}{4\log_{t} 3} = 10$ $\frac{25}{12\log_{t} 3} = 10$ $\log_{t} 3 = \frac{25}{120}$ $t = 3^{\frac{120}{25}}$	 Scale 10D (0, 3, 5, 8, 10) 3 steps: 1.Changing all to the same base 2. Simplifies to an equation in <i>t</i> with one log 3. Finds <i>t</i> Low Partial Credit: Work of merit, for example, changes the base of one log (from the given equation) Writes either 9, 27 or 81 in the form 3^k Mid Partial Credit: One correct step High Partial Credit 2 correct steps

Q3	Мос	del Solution – 30 Marks	Marking Notes
(c) (i) (ii)	(i)	<i>Any valid explanation, for example</i> : the power you need to raise 6 to, to get <i>m</i> .	Scale 10C (0, 4, 7, 10) Note: Accept $6^x = m$ as a valid explanation
	(ii)	log ₆ <i>m</i> > 1	for (i) Low Partial Credit: • Work of merit in (i) or (ii), for example, some reference to indices • $\log_6 m > 0$ or $\log_6 m$ is positive High Partial Credit • (i) or (ii) correct

Q4	Model Solution – 30 Marks	Marking Notes
(a)	Method 1	Scale 5C (0, 2, 3, 5)
	$(1+i)^2 + (3-2i)(1+i) + p = 0$	Note: Any attempt involving the conjugate
	1 + 2i + i2 + 3 + i - 2(i)2 + p = 0	of $1 + i$, award Low Partial Credit at most.
	5 + 3i + p = 0	Method 1
	p = -5 - 3i	Low Partial Credit:Work of merit, for example, some
	Method 2	correct substitution or some correct
	Let the second root = z_2	multiplication
	Sum of roots:	High Partial Credit:
	$1 + i + z_2 = -3 + 2i$	 Fully correct substitution and multiplication
	$z_2 = -4 + i$	
	Product of roots:	Method 2
	(1+i)(-4+i) = p	Low Partial Credit:
	p = -5 - 3i	 z² - (sum)z + product States p is the product of the roots
	Method 3	• Sum of the roots = $-3 + 2i$
	$z = \frac{-(3-2i)\pm\sqrt{(3-2i)^2 - 4p}}{2}$	High Partial Credit:
	$2z = -(3 - 2i) \pm \sqrt{(3 - 2i)^2 - 4p}$	 Finds 2nd root States sum of the roots = 3 - 2<i>i</i>, but
	$2z + 3 - 2i = \pm \sqrt{(3 - 2i)^2 - 4p}$	finishes correctly
	$[2z + 3 - 2i]^2 = (3 - 2i)^2 - 4p$	Method 3
	z = 1 + i satisfies this equation	Low Partial Credit:
	$[2(1+i) + 3 - 2i]^2 = (3 - 2i)^2 - 4p$	Some correct substitution in the
	$5^2 = (3 - 2i)^2 - 4p$	quadratic formula
	4p = -20 - 12i	High Partial Credit:
	$p = \frac{-20 - 12i}{4}$	• Formula fully substituted and $1 + i$
	$\int_{-5}^{7} \frac{4}{3i}$	substituted for z
	Method 4	 Formula fully substituted and set equal to 1 + i
	$\frac{z + (4 - i)}{z - 1 - i/z^2 + (3 - 2i)z + p}$	Method 4
	$\frac{z-1-i/z^2+(3-2i)z+p}{z^2-(1+i)z}$	Low Partial Credit:
	$\frac{2}{(4-i)z+p}$	Sets up long division but divisor
	(4-i)z - 5 - 3i	must be of the form $z - a + bi$, where $a = 1$ and $b = -1$ (Accept
	p+5+3i	b = 1 here)
	p + 5 + 3i = 0	High Partial Credit:
	p = -5 - 3i	
		 First cycle of long division done correctly.

Q4	Model Solution – 30 Marks	Marking Notes
(b)	Reference Angle:	Scale 15D (0, 4, 8, 12, 15)
	$\alpha = \tan^{-1} \frac{\sqrt{3}}{1} = 60^{\circ} \left(\frac{\pi}{3} \text{ rads}\right)$	Note: polar form must be used to achieve any credit.
	<u>Argument:</u> $\theta = 180^{\circ} - 60^{\circ} = 120^{\circ} \left(\frac{2\pi}{2} \text{ rads}\right)$	Note: Accept correct polar form without work (i.e., finding $m{r}$ and $m{ heta}$)
	Modulus:	Note: if $(w^2)^2$ is found, award <i>Mid Partial</i> <i>Credit</i> at most.
	$r = \sqrt{(-1)^2 + \left(\sqrt{3}\right)^2}$	Note: general polar form is not required to find the roots.
	$=\sqrt{4}$	Note: Accept solution in decimal form.
	= 2	4 steps:
	<u>General Polar Form:</u>	1 . Finds θ
	$2(2\pi (2\pi + 2\pi)) + i \sin (2\pi + 2\pi))$	2 . Finds <i>r</i>
	$2\left(\cos\left(\frac{2\pi}{3}+2n\pi\right)+i\sin\left(\frac{2\pi}{3}+2n\pi\right)\right)$	3. One root evaluated from De Moivre's expression
	$w^{2} = 2\left(\cos\left(\frac{2\pi}{3} + 2n\pi\right) + i\sin\left(\frac{2\pi}{3} + 2n\pi\right)\right)$	4. 2 nd root found
	$w = \left[2\left(\cos\left(\frac{2\pi}{3} + 2n\pi\right) + i\sin\left(\frac{2\pi}{3} + 2n\pi\right)\right)\right]^{\frac{1}{2}}$	Low Partial Credit: • Work of merit, for example, plots $-1 + \sqrt{3}i$
	De Moivre:	 Work of merit towards finding r or
	$w = 2^{\frac{1}{2}} \left[\left(\cos \frac{1}{2} \left(\frac{2\pi}{3} + 2n\pi \right) + i \sin \frac{1}{2} \left(\frac{2\pi}{3} + 2n\pi \right) \right) \right]$	θ • $w = (-1 + \sqrt{3}i)^{\frac{1}{2}}$
	$=2^{\frac{1}{2}}\left[\cos\left(\frac{\pi}{3}+n\pi\right)+i\sin\left(\frac{\pi}{3}+n\pi\right)\right]$	
		 Mid Partial Credit 2 steps correct
	$\underline{n=0}$:	
	$\frac{n=0}{w} = \sqrt{2}\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$	High Partial Credit
		3 steps correct
	$=\sqrt{2}\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$	Full Credit –1
	$= \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$	 Roots found correctly, but one or both in polar form
	$\frac{n=1:}{w=\sqrt{2}\left(\cos\left(\frac{\pi}{3}+\pi\right)+i\sin\left(\frac{\pi}{3}+\pi\right)\right)}$	
	$=\sqrt{2}\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)$	
	$= -\frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2}i$	

Q4	Model Solution – 30 Marks	Marking Notes
(c)	(i)	Scale 10D (0, 3, 5, 8, 10)
(i) (ii) (iii)	iu = i(a + bi) = $ai + bi^2$ $\overline{u} = -b - ai$	Note: 4 elements required: iu , $i\overline{u}$, plot, transformation
	= ai + bi $= -b + ai$	Note: Accept conjugate plot from either candidate's work in (i) or by reflection of their $i\overline{u}$ in the real axis
	(ii) $ \begin{array}{c} & \text{Im} \\ \bullet & u = a + bi \end{array} $	 Low Partial Credit: Work of merit in one element, for example, i(a + bi)
	iu • Re	 Mid Partial Credit 1 element correct and work of merit in a 2nd element
	 <i>īū</i> 	 High Partial Credit 2 elements correct and work of merit in a 3rd element
		Full Credit -1
	(iii) 90° counterclockwise rotation about the	 Diagram not labelled, otherwise correct
	origin followed by axial symmetry in Re axis (<i>x</i> axis)	
	Axial symmetry in the Im axis (y axis) followed by a 90° counterclockwise rotation about the origin.	
	Axial symmetry in a line through the origin with slope -1 or similar	

Q5	Model Solution – 30 Marks	Marking Notes
(a)	$f(x) = (5x^2 + 7)^{-1}$	Scale 15C (0, 6, 12, 15)
	$f'(x) = -1(5x^2 + 7)^{-2}(10x)$	Accept $-10x(5x^2+7)^{-2}$ for full credit.
	$= -10x(5x^2+7)^{-2}$	Low Partial Credit:
	$f'(x) = \frac{-10x}{(5x^2 + 7)^2}$	 Some correct differentiation <i>High Partial Credit:</i> Correct substitution into quotient rule
	OR	 One error in substitution into quotient rule, but finishes correctly
	u(x) = 1 so $u'(x) = 0$	Full Credit –1
	$v(x) = 5x^2 + 7$ so $v'(x) = 10x$	• $f'(x) = -1(5x^2 + 7)^{-2}(10x)$
	$f'(x) = \frac{(5x^2 + 7)(0) - 1(10x)}{(5x^2 + 7)^2}$	
	$=\frac{-10x}{(5x^2+7)^2}$	
(b)	$u = \tan \frac{x}{2}$ $v = \ln x$	Scale 5D (0, 2, 3, 4, 5)
	$\frac{du}{dx} = \frac{1}{2}\sec^2\frac{x}{2} \qquad \qquad \frac{dv}{dx} = \frac{1}{x}$	No differentiation no credit
		4 steps
	$g'(x) = \left(\tan\frac{x}{2}\right) \left(\frac{1}{x}\right) + \left(\ln x\right) \left(\frac{1}{2}\sec^2\frac{x}{2}\right)$	1. Finds $\frac{du}{dx}$
	(2)(x) + (2 2)	2. Finds $\frac{dv}{dx}$
	At $x = \frac{\pi}{2}$:	3. Applies the product rule correctly
	$g'(x) = \left(\tan\frac{\left(\frac{\pi}{2}\right)}{2}\right) \left(\frac{1}{\left(\frac{\pi}{2}\right)}\right) + \left(\ln\frac{\pi}{2}\right) \left(\frac{1}{2}\sec^2\frac{\left(\frac{\pi}{2}\right)}{2}\right)$	4. Evaluates at $x = \frac{\pi}{2}$
		Low Partial Credit:
	$=1\left(\frac{2}{\pi}\right)+\ln\frac{\pi}{2}\left(\frac{1}{2}(2)\right)$	Any correct differentiation
	$=\frac{2}{\pi} + \ln\frac{\pi}{2}$	Mid Partial Credit 2 steps correct
	π 2	High Partial Credit
		• 3 steps correct
		Full Credit –1
		Answer not in the correct form

Scale 10D (0, 3, 5, 8, 10) Three parts to check: (i) and injective and
ed morenot surjective.e sameIn part (i) accept $g(f(3))$, where g and f on.In part (i) accept $g(f(3))$, where g and f on.are the functions from part (b).Low Partial Credit:• Shows some understanding of injective or surjective functions.• Work of merit in any part, for example, $f(3)$ correct, merit in explanation of injective or surjective
son. Mi

Q6	Model Solution – 30 Marks	Marking Notes
(a)(i)	$x + 4 = x^{2} - 2$ $x^{2} - x - 6 = 0$ (x - 3)(x + 2) = 0 x = 3, x = -2	 Scale 10C (0, 4, 7, 10) Low Partial Credit: Work of merit, for example, equation correctly established High Partial Credit: Factors correct Quadratic formula fully substituted One correct answer verified

Q6	Model Solution – 30 Marks	Mar
(a)(ii)	Method 1	Scale
	$f(x) - g(x) = x + 4 - (x^{2} - 2)$ = -x ² + x + 6	Cons
	Area = $\int_{-1}^{2} (-x^2 + x + 6) dx$	1
	v =1	2
	$= \left[-\frac{x^3}{3} + \frac{x^2}{2} + 6x \right]_{-1}^2$	3
	$= \left(-\frac{(2)^3}{3} + \frac{2^2}{2} + 6(2)\right) - \left(-\frac{(-1)^3}{3} + \frac{(-1)^2}{2} + 6(-1)\right)$	They orde then
	$=\frac{33}{2}$ [units ²]	step
	2	Low
	OR	•
	Method 2	•
	Area ₁ = $\int_{-1}^{2} (x+4) dx$	•
	$=\left[\frac{x^2}{2}+4x\right]_{-1}^2$	
	$=\left[\left(\frac{(2)^{2}}{2}+(8)\right)-\left(\frac{(-1)^{2}}{2}+(-4)\right)\right]$	•
	$=\frac{27}{2}$	Mid
	Area ₂ = $\int_{-1}^{2} (x^2 - 2) dx$	•
	$=\left[\frac{x^3}{3}-2x\right]_{-1}^2$	High •
	$= \left[\left(\frac{(2)^3}{3} - 2(2) \right) - \left(\frac{(-1)^3}{3} - 2(-1) \right) \right]$	•
	= - 3	•
	Area $=$ $\frac{27}{2} + 3 = \frac{33}{2}$ [units ²]	Full
	OR	•
	Method 3	
	x intercept of $g(x)$: $x^2 - 2 = 0 \rightarrow x = \sqrt{2}$	
	$A_{1} = \left \int_{-1}^{\sqrt{2}} (x^{2} - 2) dx \right = \frac{4\sqrt{2} + 5}{3}$	
	$A_2 = \int_{\sqrt{2}}^2 (x^2 - 2) dx = \frac{4\sqrt{2} - 4}{3}$	
	$A_3 = \int_{-1}^{2} (x+4) dx = \frac{27}{2}$	
	Total Area $=$ $\frac{4\sqrt{2}+5}{3} + \frac{27}{2} - \left(\frac{4\sqrt{2}-4}{3}\right) = \frac{33}{2}$ [units ²]	

	Marking Notes	
	Scale 15D (0, 4, 8, 12, 15)	
	Consider as 4 steps:	
	1. Integrate <i>f</i>	
	2. Integrate g	
	3. Combine	
	4. Evaluate with Limits	
``	They may do these in a different	
-1))	order, e.g., combine f and g and	
)	then integrate this function (= 3	
	steps)	
	Low Partial Credit:	
	 Integration indicated 	
	Some correct integration	
	• Sets up integration of original	
	function(s)	
	 Some work of merit towards finding an approximate area 	
	using the Trapezoidal Rule	
	 Work of merit towards finding 	
	x intercept of $g(x)$	
	• <i>f</i> (−1) or <i>f</i> (2) found	
	Mid Partial Credit:	
	2 steps correct	
	 1 relevant area calculated 	
	High Partial Credit:	
	 2 relevant areas calculated 	
	correctlySteps 1 and 2 correct and one	
	relevant area calculated	
	 3 steps correct 	
	Full Credit -1	
	● Area = −16.5	

Q6	Model Solution – 30 Marks	Marking Notes
(b)	$\begin{bmatrix} b\left(\frac{1}{b}e^{bx}\right) \end{bmatrix}_{0}^{b} = e \\ \left(e^{b(b)} - e^{b(0)}\right) = e \\ e^{b^{2}} - 1 = e \\ e^{b^{2}} = e + 1 \\ b^{2} = \ln(e+1) \\ b = \sqrt{\ln(e+1)} = 1 \cdot 15 \dots$	Scale 5D (0, 2, 3, 4, 5)Note: if there is an error in integration, max of Mid Partial Credit is awarded and only if both limits are substituted correctlyLow Partial Credit: • Some correct integration, for example, ke^{bx} ($k \neq 1$) appears without the integral sign • +CMid Partial Credit: • Fully correct integration High Partial Credit: • $e^{b^2} - 1 = e$

Q7	Model Solution – 50 Marks	Marking Notes
(a)	$v(0) = \frac{2}{3}(0)^3 - 6(0)^2 + 13(0) + 109$ v(0) = 109 km/hr	Scale 5B (0, 2, 5) Accept correct answer without work. Partial Credit:
		 Some correct substitution Identifies t = 0 Substitutes t = 5 Full Credit -1 No unit or incorrect unit
(b)	$v'(t) = 2t^{2} - 12t + 13$ $v'(5) = 2(5)^{2} - 12(5) + 13$ = 3 [km/hr/min]	 Scale 10C (0, 4, 7, 10) Accept correct answer without unit Low Partial Credit: Some correct differentiation High Partial Credit Substitution into correct derivative At most one error in differentiation and finishes correctly

Q7	Model Solution – 50 Marks	Marking Notes
(c)	Maximum speed when $v'(t)=0$	Scale 10C (0, 4, 7, 10)
	$2t^2 - 12t + 13 = 0$	Note: Accept candidate's derivative from part (b)
	$t = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(2)(13)}}{2(2)}$ t = 4 \cdot 58 or t = 1 \cdot 42	Note: If candidate's derivative is linear, award <i>Low Partial Credit</i> at most
	Maximum at $t = 1 \cdot 42$	3 steps:
	Maximum at $t = 1 \cdot 42$ [as coefficient of $t^3 > 0$ and domain of interest is $[0, 4]$, with local min at $t = 4 \cdot 58$] OR [v''(t) = 4t - 12 v''(1.42) < 0 \Rightarrow maximum at $t = 1.42$]	1. $v'(t) = 0$ 2. Substitutes into formula 3. Evaluates for t Low Partial Credit: • Work of merit in finding $v'(t)$ or brings $v'(t)$ from (b) • States $v'(t) = 0$ or similar • $v''(t)$ appears High Partial Credit: • 2 steps correct Full Credit -1 • $t = 4.58$ written down and not explicitly excluded • Rounded incorrectly or no rounding, otherwise correct

Q7	Model Solution – 50 Marks	Marking Notes
Q7 (d)	$\frac{1}{5-0} \left[\int_0^5 \left(\frac{2}{3}t^3 - 6t^2 + 13t + 109 \right) dt \right]$ = $\frac{1}{5} \left[\frac{t^4}{6} - 2t^3 + \frac{13t^2}{2} + 109t \right]_0^5$ = $\frac{1}{5} \left[\left(\frac{(5)^4}{6} - 2(5)^3 + \frac{13(5)^2}{2} + 109(5) \right) - (0) \right]$	Marking NotesScale 10D (0, 3, 5, 8, 10)Note: Indication of integration is required to be awarded any credit4 steps:Note: If $\frac{1}{5}$ is omitted, treat step 1 as not fully correct, but all other steps can be accepted as correctNote: If speed is treated as $v'(t)$ in (a)
	= 112 · 333 km/hr = 112 · 33 km/hr [2 d.p.]	a correct solution must include the line, $\frac{1}{5} \left[\int_0^5 v'(t) dt \right]$ 1. $\frac{1}{5} \left[\int_0^5 v(t) dt \right]$ 2. Integrates correctly 3. Subs in limits 4. Evaluates correctly <i>Low Partial Credit:</i> • Work of merit, for example, integration indicated
		 Mid Partial Credit: 2 steps correct High Partial Credit 3 steps correct Full Credit -1 Rounded incorrectly or no rounding, otherwise correct Incorrect unit or no unit, otherwise correct

Q7	Model Solution – 50 Marks	Marking Notes
(e)	Answer: B	Scale 5C (0, 2, 3, 5)
	Justification:	Note: Justification needs to explicitly
	v'(1) > 0:	deal with both $oldsymbol{v}'$ and $oldsymbol{v}''$, but can be a single combined sentence.
	Function is increasing so the slope is positive.	Note: Substitution into $v'(t)$ or $v''(t)$ is not considered work of merit.
	v''(1) < 0:	Note: Accept "the function is concave down", or similar as a justification
	Rate of increase is slowing.	using $oldsymbol{v}^{\prime\prime}(1) < oldsymbol{0}$
	OR	
	The slope is decreasing.	3 elements required:
		1. Answer B
		2 . Justification for $v'(1) > 0$
		3. Justification for $v''(1) < 0$
		Low Partial Credit:
		Answer correct
		• Work of merit in either
		justification
		High Partial Credit:
		 2 elements correct
		• Answer given as B or D , justified correctly using $v'(1)$
		 Answer given as B justified correctly using v''(1)
		• Answer given as A justified correctly using $v''(1)$
		–
		 No answer given, but 2 justifications are correct

(f)	Time = Distance/Speed = $\frac{10}{100}$ = 6 [minutes]	Scale 5B (0, 2, 5)
(.)	$IIIII = Distance/speed = \frac{1}{100} = 0 [IIIIIIIII]$	
		Note: Accept correct answer without units
		Partial Credit:
		Work of merit in finding time
		Full Credit –1
		• $1/10$ (i.e. incorrect unit)
(g)	120 km/hr for 2 minutes:	• 1/10 (i.e. incorrect unit)
(8)	Distance = $120 \times \frac{2}{60} = 4$ km	Scale 5D (0, 2, 3, 4, 5)
	10 - 4 = 6 km remaining to get to B	Accept -15km/hr/min
	Average Speed:	Low Partial Credit:
	$\frac{10}{\text{total time}} = 100$	 Some correct substitution in relation to distance for first 2
		minutes or time / distance for
	total time = $\frac{1}{10}$ hrs	remaining part
	= 6 minutes	 Indicates integration
	\Rightarrow 4 minutes remaining to get to <i>B</i>	Mid Partial Credit:
	Average speed for last 6 km:	• Identifies 4 km, 6 km or 4
	Avg Speed = $6 \div \left(\frac{1}{15}\right) = 90$ km/hr	minutes.
	$\frac{120+v}{2} = 90$, where v is the speed at B	High Partial Credit
	$v = 60 \ km/hr$	 Calculates 60 km/hr after the extra 4 minutes or 90km/hr
	Decelerates from 120 to 60 over 4 minutes.	after extra 2 minutes.
	So, deceleration = $15 \text{ km/hr per minute}$	Full Credit -1
		• Answer in km/hr/hr
	OR	
	Average speed for last 6 km: $\frac{120+v}{2}$, where v is the	
	speed at B	
	Distance = $\left(\frac{120 + v}{2}\right) \times \text{time}$	
	$6 = \left(\frac{(120+v)}{2}\right) \times \frac{4}{60}$	
	v = 60	
	Decelerates from 120 to 60 over 4 minutes.	
	Deceleration = $15 \text{ km/hr per minute}$	
	OR Average speed for the last 6km:	
	$\frac{1}{4}\int_0^4 (120 - at)dt = 90$	
	$1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}^4$	
	$\frac{1}{4} \left[120t - \frac{1}{2}at^2 \right]_0^4 = 90$	
	$\left \frac{1}{4}\left[120(4) - \frac{1}{2}a(4)^2\right] = 90\right $	
	120 - 2a = 90 a = 15 kmh ⁻¹ per minute	
	a = 15kmh ⁻¹ per minute	

.

Q8	Model Solution – 50 Marks	Marking Notes
(a)	$F = 3000(1 + 0.024)^5$	Scale 5B (0, 2, 5)
	= €3377.70	 Partial Credit: Work of merit, for example, some correct substitution into relevant formula; finds 2.4% as a decimal
(b) (i),	(i) It is the amount that should be invested	Scale 10D (0, 3, 5, 8, 10)
(ii)	today to amount to €1000 in 1 years' time at the particular interest rate.	Note: In (i) Accept $P = \frac{1000}{(1+i)}$ Low Partial Credit:
	(ii) $4000 = P(1 + 0.024)^6$ $\frac{4000}{1.024^6} = P$ $P = €3469 \cdot 45$	 Work of merit in (i) or (ii), for example, formula in (i), correct substitution into relevant formula in (ii) 2.4% written as a decimal <i>Mid Partial Credit:</i> (i) or (ii) correct Work of merit in both parts <i>High Partial Credit</i> One part correct and work of merit in the other part
(c)	$1 \cdot 024 = (1 + i)^{4}$ $(1.024)^{\frac{1}{4}} = 1 + i$ $(1.024)^{\frac{1}{4}} - 1 = i$ $0 \cdot 005947 = i$ Rate = $0 \cdot 59\%$	Scale 5C (0, 2, 3, 5) Low Partial Credit: • Some correct substitution into relevant formula • 2.4% written as a decimal High Partial Credit: • $(1.024)^{\frac{1}{4}} = 1 + i$ • Evaluates correctly $i = (1.024)^4 - 1$ • Uses 3 or 12 instead of 4, but otherwise correct Full Credit -1 • Answer given as a decimal

Q8	Model Solution – 50 Marks	Marking Notes
(d)	(i)	Scale 15D (0, 4, 8, 12, 15)
(i) (ii)	$A(1 \cdot 0011)^{36} + A(1 \cdot 0011)^{35} + \cdots$ $\dots + A(1 \cdot 0011)^2 + A(1 \cdot 0011)$	Consider as requiring 3 steps: 1. Finds geometric series
	OR	2. Substitutes into geometric formula
	$= A[(1 \cdot 0011)^{36} + (1 \cdot 0011)^{35} + \cdots$	3. Finds <i>A</i>
	$ + (1 \cdot 0011)^2 + (1 \cdot 0011)]$	Low Partial Credit:
	(ii) $A[1.0011 + (1.0011)^2 + \cdots$ $\dots + (1.0011)^{35} + (1.0011)^{36}]$	 Work of merit in either part, for example, in (i)Writes 0.11% as a decimal; in (ii), sets answer in (i) equal to 12000
	$a = 1 \cdot 0011, r = 1 \cdot 0011, n = 36$	Mid Partial Credit:
	$A\left[\frac{1\cdot0011(1-1\cdot0011^{36})}{1-1\cdot0011}\right] = 12000$	 1 step correct Substantial work of merit in both parts
	$A = \frac{12000}{\frac{1 \cdot 0011(1 - 1 \cdot 0011^{36})}{1 - 1 \cdot 0011}}$	High Partial Credit: • 2 steps correct Full Credit –1:
	<i>A</i> = €326 · 60 [2 D.P.]	 Correct solution, but excludes second and/or second last term Investments made at the end of each month, otherwise correct
(e)	$E(x) = 11(0 \cdot 52) + (x - 5)(0 \cdot 15)$	Scale 10C (0, 4, 7, 10)
	$+ x(0 \cdot 33) = 13 \cdot 85$	Low Partial Credit:
	0.15x + 0.33x = 13.85 - 5.72 + 0.75	 Work of merit, for example, some correct term in <i>E</i>(<i>x</i>)
	$0 \cdot 48x = 8 \cdot 88$	High Partial Credit
	$x = \mathbf{\in} 18 \cdot 50$	Fully correct equation
(f)	Cost Price = 82% of Selling Price	Scale 5B (0, 2, 5)
	Profit $= 18\%$ of Selling Price	Partial Credit:
	Mark-up $= \frac{0.18}{0.82} \times 100$	• Work of merit, for example, states
	0.82 = 0 · 2195 = 22% [nearest percent]	CP = 82% of SP • Mentions 82%
	OR	 Finds 18% of a number
	Let $x =$ selling price and $y =$ cost price	
	$\frac{x-y}{x} = 0.18 \rightarrow y = 0.82x$	
	Mark up:	
	$\frac{x-y}{y} = \frac{x-0.82x}{0.82x} = \frac{9}{41}$	
	Mark up:	
	$\frac{9}{41} \times 100 = 21.95$	
	= 22% [nearest percent]	

Q9	Model Solution – 50 Marks					Marking Notes		
(a)	(i) 2 ⁰ ,	2 ¹ , 2 ² ,	2 ³ , 2 ⁴					Scale 15D (0, 4, 8, 12, 15)
(i) (ii) (iii)	OR					Accept for full credit correct answers without work		
	1, 2, 4, 8, 16						In (i) accept any 5 factors including negative factors	
	(ii) 8						In (ii) accept 16 for full credit	
	(iii) 2^{10} and 3^{12} have no common factors 2^{10} will have 11 factors 3^{12} will have 13 factors					 In (iii) accept 286 factors for full credit Low Partial Credit: Work of merit in one part, for example, one correct factor in (i) or lists 2 or more factors in (ii) 		
	So $2^{10} \times 3^{12}$ will have $(11)(13) = 143$ factors					 Some valid relevant statement in (ii) or (iii) Mid Partial Credit 		
								One part correct
								High Partial Credit
								 Two parts correct
							• Either (i) or (ii) correct and work of merit in (iii)	
(b)	x	1	2	3	4	6	12	Scale 20D (0, 5, 10, 15, 20)
(i) (ii)								Solution consists of 12 parts:
(iii)	У	12	6	4	3	2	1	6 values in table
								• 5 points plotted
	≉ 12							 Points joined appropriately (not with line segments)
	11							Low Partial Credit:
	10							• 3 parts correct
	9							Mid Partial Credit
	8							• 7 parts correct
	7							High Partial Credit
	6							• 9 parts correct
	5							Full Credit -1
	4							 11 parts correct Correct graph with no table
	2							entries
	0+	0 1 2	3 4	56	78	9 10 1		

(c)(i)	Method 1	Scale 10D (0, 3, 5, 8, 10)
	Derivative:	Method 1 & Method 2
	$y = \frac{12}{x} \frac{dy}{dx} = -\frac{12}{x^2}$	4 steps:
	$\frac{dy}{dx}(x=p) = -\frac{12}{p^2}$	1. Finds $\frac{dy}{dx}$
	Equation at point $\left(p, \frac{12}{p}\right)$:	2. Finds slope at $x = p$
	· · · · ·	3. Subs slope and point $\left(p, \frac{12}{p}\right)$ into
	$y - \frac{12}{p} = -\frac{12}{p^2}(x - p)$	equation of line formula
	$y = -\frac{12}{p^2}x + \frac{24}{p}$	4. Finds equation in required form
	OR	Low Partial Credit:
	Method 2 Derivative: $y = \frac{12}{r} \frac{dy}{dr} = -\frac{12}{r^2}$	Work of merit, for example, some correct differentiation, some correct substitution into equation of line formula
	$\int x dx x^2$	Mid Partial Credit
	$\frac{dy}{dx}(x=p) = -\frac{12}{p^2}$	• 2 steps correct
		High Partial Credit
	Equation at point $\left(p, \frac{12}{p}\right)$:	3 steps correct
	Line is of the form $y = -\frac{12}{p^2}x + c$	Method 3
	$\frac{12}{p} = -\frac{12}{p^2}(p) + c$	4 steps:
	$\left[\frac{12}{p} = -\frac{12}{p} + c\right]$	 From the given equation writes down the slope of the tangent
	24	2. Finds $\frac{dy}{dx}$
	$c = \frac{24}{p}$	3. Substitutes $x = p \ln \frac{dy}{dx}$
	OR Method 3	4. Verifies that the point $\left(p, \frac{12}{p}\right)$ is on
	From the given equation the slope is $-\frac{12}{n^2}$	the given equation
	$\frac{dy}{dr} = -\frac{12}{r^2}$	
	$\frac{dx}{dx}(x=p) = -\frac{12}{n^2}$	 Low Partial Credit: Work of merit, for example, some
	$dx = p^{2}$ Substitute $\left(p, \frac{12}{p}\right)$ in the given equation	correct differentiation, some correct substitution into the given equation
	12 12 24	Mid Partial Credit
	$\frac{12}{p} = -\frac{12}{p^2}(p) + \frac{24}{p}$	• 2 steps correct.
	$\frac{12}{n} = -\frac{12}{n} + \frac{24}{n}$	High Partial Credit
		• 3 steps correct.
	$\frac{12}{p} = \frac{12}{p}$	

(c)(ii)	<u>y-intercept:</u>	Scale 5D (0, 2, 3, 4, 5)
	$\overline{y = -\frac{12}{p^2}(0)} + \frac{24}{p}$ $y = \frac{24}{p}$ $\left(0, \frac{24}{p}\right)$	Method 1
	$y = \frac{24}{24}$	4 steps:
	$\begin{pmatrix} p \\ p \\ 24 \end{pmatrix}$	1. Finds the x-intercept
	$\left(0, \frac{1}{p}\right)$	2. Finds the y-intercept
	24	3. Substitution into area formula
	height = $\frac{24}{p}$	4. Finds k
	$\frac{x \text{-intercept:}}{0 = -\frac{12}{p^2}x + \frac{24}{p}}$ $\frac{12}{p^2}x = \frac{24}{p}$	Note: Accept where candidates substitute a value for <i>p</i> into the equation of the tangent, find both intercepts of the subsequent equation, and then find <i>k</i>
	$p^{2} \qquad p$ $\frac{12}{p} x = 24$ $x = 2p$ $(2p, 0)$ base = 2p Area = $\frac{1}{2}(2p)\left(\frac{24}{p}\right)$ $= 24 \text{ units}^{2}$ OR $x \text{ intercept } (2p, 0)$ $\int_{0}^{2p} \left(-\frac{12}{p^{2}}x + \frac{24}{p}\right) dx$ $= \left(-\frac{12x^{2}}{2p^{2}} + \frac{24x}{p}\right)_{0}^{2p}$ $= -24 + 48$	Low Partial Credit: • Work of merit, for example, lets x = 0 or $y = 0Mid Partial Credit• 2 steps correctHigh Partial Credit• 3 steps correctMethod 21. Finds x intercept2. Integrates the function3. Substitutes limits4. Finds kLow Partial Credit:• Work of merit, for example, letsy = 0• Indicates integration$
	= 24 [units ²]	 Mid Partial Credit 2 steps correct High Partial Credit 3 steps correct

Q10	Model Solution – 50 Marks	Marking Notes
(a)		 Scale 5B (0, 2, 5) Partial Credit: Work of merit, for example, each rectangle of height 2 units
(b)	Method 1 $h = \frac{8}{3}$ Using similar triangles $\frac{w_1}{2} = \frac{8}{3} \div 8 (w_1 = \text{length of middle rectangle})$ $w_1 = \frac{2}{3}$ $w_2 = \frac{4}{3} (w_2 = \text{length of top rectangle})$ Area = $2 \left(\frac{8}{3}\right) + \frac{4}{3} \left(\frac{8}{3}\right) + \frac{2}{3} \left(\frac{8}{3}\right)$ $= \frac{32}{3} \text{ units}^2$ Method 2 6 small triangles of length $\frac{2}{6} = \frac{1}{3}$ Area _{small $\Delta's = 6 \times \frac{1}{2} \times \frac{1}{3} \times \frac{8}{3} = \frac{8}{3}$ Area_{big $\Delta} = \frac{1}{2} \times 2 \times 8 = 8$ Area_{rectangles} $= \frac{8}{3} + 8 = \frac{32}{3} \text{ units}^2$ Method 3 Sum of lengths of horizontal sides of small triangles (i.e., excess of rectangles over large triangle) = 2 Height of each small triangle $= \frac{8}{3}$ Σ areas of small $\Delta's = \frac{1}{2} \times 2 \times 8 = 8$ Area of large triangle $= \frac{1}{2} \times 2 \times 8 = 8$ \therefore Area of rectangles $= \frac{8}{3} + 8 = \frac{32}{3}$}}	 Scale 10C (0, 4, 7, 10) Low Partial Credit: Work of merit in finding dimensions or area of one rectangle or one small triangle, Finds h = ⁸/₃ Finds the area of the large triangle High Partial Credit: w₁ and w₂ found Areas of 2 rectangles found Sum of the areas of the small triangles found with work shown

Q10	Model Solution – 50 Marks	Marking Notes
(c)	Method 1	Scale 5C (0, 2, 3, 5)
	$T_{4} = \frac{8}{4} \left[\frac{2}{4} + \frac{4}{4} + \frac{6}{4} + \frac{8}{4} \right]$ Similarly, $T_{n} = \frac{8}{n} \left[\frac{2}{n} + \frac{4}{n} + \dots + \frac{2n}{n} \right]$ $= \frac{8}{n^{2}} [2 + 4 + 6 + \dots + 2n]$ $2 + 4 + \dots + 2n \text{ is an A.P. with } a = 2 \text{ and } d = 2$ and <i>n</i> terms $S_{n} = \frac{n}{2} [2(2) + (n - 1)(2)]$ = n(n + 1) $T_{n} = \frac{8}{n^{2}} [n(n + 1)]$ $= \frac{8}{n} (n + 1)$ or equivalent	Low Partial Credit: • Work of merit, for example, work towards establishing pattern by writing T_k , $k \neq 3$ • $\frac{8}{n}$ mentioned as height of rectangle • Identifies $2n$ (or n) small triangles • Base length of each small triangle found High Partial Credit: • $T_n = \frac{8}{n} \left[\frac{2}{n} + \frac{4}{n} + \dots + \frac{2n}{n} \right]$ or equivalent not in closed form • Finds sum of the areas of the small
	Method 2 Total area = area of given triangle plus sum of areas of small triangles. $h = \frac{8}{n}$ 2n small triangles Base of each small $\Delta = \frac{2}{2n} = \frac{1}{n}$ Area of small $\Delta's = 2n \times \frac{1}{2} \times \frac{1}{n} \times \frac{8}{n}$ $= \frac{8}{n}$ Area = $(\frac{8}{n}) + (\frac{1}{2} \times 2 \times 8)$ $= \frac{8}{n} + 8$	triangles

Q10	Model Solution – 50 Marks	Marking Notes
(d)	$\frac{8(n-1)}{n} > 0.95(8)$	Scale 10D (0, 3, 5, 8, 10)
		Note: where candidates multiply both
	$\left \frac{n-1}{n} > 0 \cdot 95\right $	sides by n^2 , they must find $n = 20$ to be awarded <i>High Partial Credit</i> .
	$n-1 > 0 \cdot 95n$	Low Partial Credit:
	$0 \cdot 05n > 1$	 Work of merit in establishing inequality, for example, finds the
	<i>n</i> > 20	area of triangle
	<i>n</i> = 21	Mid Partial Credit
	OR	• Forms the correct inequality High Partial Credit
	$\frac{8n^2(n-1)}{n} > 0.95(8)n^2$	• $n-1 > 0 \cdot 95n$
	$8n^2 - 7.6n^2 - 8n > 0$	
	$0.4n^2 - 8n > 0$	
	$n^2 - 20n > 0$	
	n(n-20) > 0	
	<i>n</i> > 20	
	<i>n</i> = 21	
(e) (i)	$\int_{0}^{h} \frac{x^{2} c^{2}}{h^{2}} dx = \frac{c^{2}}{h^{2}} \int_{0}^{h} x^{2} dx$	Scale 10C (0, 4, 7, 10)
	$\int \frac{dx}{h^2} dx = \frac{dx}{h^2} \int \frac{dx}{h^2} dx$	Low Partial Credit:
		 Integral set up correctly High Partial Credit
	$=\frac{c^2}{h^2} \left[\frac{x^3}{3} \right]_0^h$	 Integration is correct
	$=\frac{c^2}{h^3} \begin{bmatrix} h^3 \\ -0 \end{bmatrix}$	• Mishandles $\frac{c^2}{h^2}$, but otherwise
	$\begin{bmatrix} -h^2 \begin{bmatrix} 3 & 0 \end{bmatrix}$	correct.
	$= \frac{c^2}{h^2} \left[\frac{h^3}{3} - 0 \right]$ $= \frac{c^2 h}{3}$	
	3	

Q10	Model Solution – 50 Marks	Marking Notes
(e)(ii)	$\frac{dx}{dt} = 3 \qquad \frac{ds}{dt} = \frac{ds}{dx} \times \frac{dx}{dt}$ $S(x) = \frac{x^2 c^2}{h^2}$ $\frac{dS}{dx} = \frac{c^2}{h^2} (2x)$ $\frac{dS}{dt} = \frac{c^2}{h^2} (2x) (3)$ $= \frac{6c^2 x}{h^2}$ When $x = \frac{h}{2}$ $\frac{dS}{dt} = \frac{6c^2 \left(\frac{h}{2}\right)}{h^2} = \frac{3c^2}{h}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: • States a relevant derivative, for example, $\frac{ds}{dx}$ or $\frac{ds}{dt}$ • $x = \frac{h}{2}$ • Some correct differentiation Mid Partial Credit • Any two of the following: $\circ \frac{dx}{dt} = 3$ $\circ x = \frac{h}{2}$ $\circ \frac{ds}{dx} = \frac{c^2}{h^2}(2x)$ $\circ \frac{ds}{dt} = \frac{ds}{dx} \times \frac{dx}{dt}$ or similar High Partial Credit • $\frac{ds}{dt} = \frac{ds}{dx} \times \frac{dx}{dt}$, and any two others from the MPC list above