Coimisiún na Scrúduithe Stáit State Examinations Commission

Leaving Certificate Examination 2023

Mathematics

Higher Level

Paper 2

Marking scheme

300 marks

Marking Scheme – Paper 2, Section A and Section B

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	А	В	С	D
No of categories	2	3	4	5
5 mark scales		0, 2, 5	0, 2, 3, 5	0, 2, 3, 4, 5
10 mark scales		0, 5, 10	0, 4, 7, 10	0, 3, 5, 8, 10
15 mark scales				0, 4, 8, 12, 15
20 mark scales				0, 6, 12, 17, 20

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales – level descriptors

A-scales (two categories)

- incorrect response
- correct response

B-scales (three categories)

- response of no substantial merit
- partially correct response
- correct response

C-scales (four categories)

- response of no substantial merit
- response with some merit
- almost correct response
- correct response

D-scales (five categories)

- response of no substantial merit
- response with some merit
- response about half-right
- almost correct response
- correct response

Section A		Section B	
Question 1	(30 marks)	Question 7	(50 marks)
(a)	10C	(a)	10C
(b)	10D	(b)	10D
(c)	10D	(c)(d)	10D
		(e)(i)	5B
Question 2	(30 marks)	(e)(ii)	10C
(a)	10C	(f)	5D
(b)	10C		
(c)	10D	Question 8	(50 marks)
		(a)	10D
Question 3	(30 marks)	(b)(i)	10C
(a)	15D	(b)(ii)	5C
(b)(i)	5B	(c)	10D
(b)(ii)	10D	(d)(i)	10D
		(d)(ii)	5C
Question 4	(30 marks)		
	100	Question 9	(50 marks)
(a)(i) (a)(ii)	150		(SU Marks)
(a)(ii)	150	(a)(i) (a)(ii)	3B 10C
(b)	ED	(a)(ii) (b)(i)	100
(6)	50	(b)(i) (b)(ii)	100
		(b)(ll) (c)(i)	
Question E	(20 marks)	(C)(I) (c)(ii)	3D 10C
		(C)(II)	100
(a)(i)(ii)(iii) (b)	200		
(0)	100	Outstian 10	
			(50 marks)
Overstien ((20 montes)	(a)(I) (a)(ii)	100
Question 6	(So marks)	(a)(II) (a)(iii)	150
(a)	5B 45D	(a)(III) (I_)(:)	50
(D)(I) (b)(::)	100	(D)(I) (b)(::)	20
(II)(II)	100	(II)(II)	50
		(111)(01)	10C

Palette of annotations	available t	to examiners
-------------------------------	-------------	--------------

Symbol	Name	Meaning in the body of the work	Meaning when used in the right margin
\checkmark	Tick	Work of relevance	The work presented in the body of the script merits full credit
×	Cross	Incorrect work (distinct from an error)	The work presented in the body of the script merits 0 credit
*	Star	Rounding / Unit / Arithmetic error / Misreading	
~~~	Horizontal wavy	Error	
Ρ	Ρ		The work presented in the body of the script merits <i>Partial Credit</i>
L	L		The work presented in the body of the script merits <i>Low Partial Credit</i>
Μ	М		The work presented in the body of the script merits <i>Mid Partial Credit</i>
H	Н		The work presented in the body of the script merits <i>High Partial Credit</i>
F*	F star		The work presented in the body of the script merits <i>Full Credit – 1</i>
[	Left Bracket		Another version of this solution is presented elsewhere and it merits equal or higher credit
$\sim$	Vertical wavy	No work on this page / portion of this page	
0	Oversimplify	The candidate has oversimplified the work	
WOM	Work of merit	The candidate has produced work of merit (in line with that defined in the scheme)	
S X	Stops early	The candidate has stopped early in this part	

<b>Note:</b> Where work of substance is presented in the body of the script, the annotation on the right margin should reflect a combination of annotations in the work.		
In a <b>C scale</b> that is <b>not</b> marked using steps, where $*$ and $\boxed{\sim}$ and $\boxed{\sim}$ appear in the body of the		
work, then L should be placed in the right margin.		
In the case of a <b>D scale</b> with the same annotations, M should be placed in the right margin.		

### **Detailed marking notes**

#### **Model Solutions & Marking Notes**

**Note:** The model solutions for each question are not intended to be exhaustive – there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Q1	Model Solution –30 Marks	Marking Notes
(a)	$P(€6, €9, €6) = \left[\frac{5}{12} \times \frac{3}{12} \times \frac{5}{12}\right]$ $= \frac{75}{1728} = \frac{25}{576} = 0 \cdot 04340$ $= 0 \cdot 0434  [4 \text{ d.p.}]$	Scale 10C (0, 4, 7, 10) Low Partial Credit: • Any correct relevant probability stated High Partial Credit: • $P(\notin 6) = \frac{5}{12}$ and $P(\notin 9) = \frac{3}{12}$ and some multiplication indicated • $\frac{5}{12} \times \frac{3}{12} \times \frac{5}{12}$ • $\frac{5}{12} \times \frac{3}{11} \times \frac{5}{10}$ and continues Full Credit -1 • Incorrect rounding or no rounding
(b)	Success = getting a 9 $P(\text{success}) = \frac{1}{4}$ Failure = not getting a 9 $P(\text{failure}) = \frac{3}{4}$ 2 successes in first 7 spins and then success $= \left(\frac{7}{2}\right) \left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^5 \times \frac{1}{4}$ $= 0 \cdot 07786 \dots$ $= 0 \cdot 0779 \text{ [4 d.p.]}$	Scale 10D (0, 3, 5, 8, 10) Consider the solution as being the product of four terms: $\binom{7}{2}$ , $\left(\frac{1}{4}\right)^2$ , $\left(\frac{3}{4}\right)^5$ and $\frac{1}{4}$ Low Partial Credit: • $P(\text{success}) = \frac{1}{4}$ • $P(\text{failure}) = \frac{3}{4}$ • $\binom{7}{2}$ • $\frac{1}{4}$ for the last day • $\binom{8}{3}$ Mid Partial Credit: • Product of two correct terms evaluated • Product of three correct terms High Partial Credit: • $\binom{7}{2}\left(\frac{1}{4}\right)^2\left(\frac{3}{4}\right)^5 \times \frac{1}{4}$ Full Credit -1 • Incorrect rounding or no rounding

Q1	Model Solution –30 Marks	Marking Notes
Q1 (c)	Model Solution –30 Marks         Will get less than €16 unless 9, 9, so: $1 - P(9, 9) = 1 - \frac{1}{4} \times \frac{1}{4} = \frac{135}{144}$ or $\frac{15}{16}$ OR $P(0,0)$ $\frac{4}{12} \times \frac{4}{12}$ $P(0,6)$ $\frac{4}{12} \times \frac{5}{12}$ $P(0 \text{ first})$ $\frac{4}{12}$ $P(0,0)$ $\frac{4}{12} \times \frac{5}{12}$ $P(0 \text{ first})$ $\frac{4}{12}$ $P(0,0)$ $\frac{4}{12} \times \frac{5}{12}$ $P(0 \text{ first})$ $\frac{4}{12}$ $P(0,0)$ $\frac{5}{12} \times \frac{5}{12}$ $P(6 \text{ first})$ $\frac{5}{12}$ $P(6,0)$ $\frac{5}{12} \times \frac{5}{12}$ $P(6 \text{ first})$ $\frac{5}{12}$ $P(6,0)$ $\frac{5}{12} \times \frac{3}{12}$ $P(6 \text{ first})$ $\frac{5}{12}$ $P(6,0)$ $\frac{5}{12} \times \frac{3}{12}$ $P(9,0)$ $\frac{1}{12}$ $P(9,0)$ $\frac{3}{12} \times \frac{5}{12}$ $P(9,0)$ $\frac{1}{12}$ $P(9,6)$ $\frac{3}{12} \times \frac{5}{12}$ $P(9,6)$ $\frac{5}{48}$ TOTAL $= \frac{15}{16}$ $= \frac{15}{16}$ $= \frac{15}{16}$	Marking NotesScale 10D (0, 3, 5, 8, 10)Note:Low Partial Credit:• Relevant probability• Relevant work on establishing the condition, for example, indicates $P(9,9)$ , or lists three that are in line with the condition (e.g., (0,0), (0,6), 
	$ \begin{array}{c} 1 - P(9,9) = 1 - \frac{1}{4} \times \frac{1}{4} = \frac{1}{144} \text{ or } \frac{1}{16} \\ = 0 \cdot 9375 \\ \hline \mathbf{OR} \\ \hline P(0,0) & \frac{4}{12} \times \frac{4}{12} \\ \hline P(0,6) & \frac{4}{12} \times \frac{5}{12} \\ \hline P(0,9) & \frac{4}{12} \times \frac{3}{12} \\ \hline P(0,9) & \frac{4}{12} \times \frac{3}{12} \\ \hline P(6,0) & \frac{5}{12} \times \frac{4}{12} \\ \hline P(6,6) & \frac{5}{12} \times \frac{5}{12} \\ \hline P(6,9) & \frac{5}{12} \times \frac{3}{12} \\ \hline P(9,0) & \frac{3}{12} \times \frac{4}{12} \\ \hline P(9,6) & \frac{3}{12} \times \frac{5}{12} \\ \hline P(9,6) & \frac{3}{12} \times \frac{5}{12} \\ \hline P(9,6) & \frac{5}{12} \times \frac{5}{12} \\ \hline P(9,6) & \frac{5}{12} \times \frac{5}{12} \\ \hline \end{array} $	Note: Low Partial Credit: • Relevant probability • Relevant work on establishing the condition, for example, indicates P(9,9), or lists three that are in line with the condition (e.g., (0,0), (0,6), (0,9)) Mid Partial Credit: • $\frac{1}{4} \times \frac{1}{4}$ indicated • Probability calculated correctly for three pairs on the table
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{bmatrix} 1 \\ 0 \\ 16 \end{bmatrix}$ or equivalent • Probability calculated correctly for
	- 0 * 9375	<ul> <li>six pairs on the table</li> <li>Full Credit -1</li> <li>No rounding or incorrect rounding</li> </ul>

Q2	Model Solution – 30 Marks	Marking Notes	
(a)	$\cos(A - B) = \cos A \cos B + \sin A \sin B$		
	Replace A with $90 - A$ : $\cos(90 - A - B) = \cos(90 - A)\cos B + \sin(90 - A)\sin B$ as $\sin A = \cos(90 - A)$		
	$\cos(90 - (A + B)) = \sin A \cos B + \cos A \sin^2 A \cos^2 B + \cos^2 A \sin^2 A \sin^2 B + \cos^2 A \sin^2 $	in <i>B</i>	
	$\sin(A+B) = \sin A \cos B + \cos A \sin B$		
		OR	
	$\sin A = \cos(90 - A)$		
	$\sin(A+B) = \cos(90 - (A+B)) = \cos(90 - (A+B))$	(00-A)-B	
	$=\cos(90-A)\cos B+\sin(9)$	$(90 - A) \sin B$ by $\cos(A - B)$ formula	
	$= \sin A \cos B + \cos A \sin B$		
	Scale 10C (0, 4, 7, 10) Low Partial Credit: • Work of merit, for example, $cos(A - B)$ formula • Verified with one or more values for A and B • $sin A = cos(90 - A)$ or $cos A = sin(90 - A)$ High Partial Credit: • $cos(90 - A - B) = cos(90 - A) cos B + sin(90 - A) sin B$		
(b)	$\sin(30 + 45) = \sin 30 \cos 45$	Scale 10C (0, 4, 7, 10)	
	$\sin 75 = \frac{1}{2} \left( \frac{1}{\sqrt{2}} \right) + \frac{\sqrt{3}}{2} \left( \frac{1}{\sqrt{2}} \right)$ $\sin 75 = \frac{1}{2\sqrt{2}} + \frac{\sqrt{3}}{2\sqrt{2}} = \frac{1 + \sqrt{3}}{2\sqrt{2}} = \frac{\sqrt{2} + \sqrt{6}}{4}$	Note: Accept $\frac{1}{2}\left(\frac{1}{\sqrt{2}}\right) + \frac{\sqrt{3}}{2}\left(\frac{1}{\sqrt{2}}\right)$ for full credit. Low Partial Credit: • Work of merit, for example $30 + 45$ , or some correct substitution into relevant formula High Partial Credit: • sin 30 cos 45 + cos 30 sin 45 or equivalent	

(c	Method 1	Scale 10D (0, 3, 5, 8, 10)
	$\sin t [1 - 2\cos t] = 0$	Method 1
	$\sin t = 0 \text{ and } 1 - 2\cos t = 0$	Consider as involving 4 steps:
	$\sin t = 0$ when $t = 0^{\circ} 180^{\circ}$ and $360^{\circ}$	<b>1.</b> Replaces <i>sin</i> 2 <i>t</i> with 2 <i>sin t cos t</i>
	$\sin t = 0$ when $t = 0$ , 100 and 500	<b>2.</b> $sin t[1 - 2 cos t] = 0$ stated or
	$1 - 2\cos t = 0$	implied
	$\cos t = \frac{1}{2}$	<b>3.</b> Solves $sin t = 0$
	$\frac{2}{1}$	<b>4.</b> Solves $1 - 2\cos t = 0$
	$\cos t = \frac{1}{2}$ when $t = 60^{\circ}$ and $t = 300^{\circ}$	OR
	$t = 0^{\circ}, 60^{\circ}, 180^{\circ}, 300^{\circ}$ and $360^{\circ}$	<b>1.</b> $sin2t - sint = 0$
		<b>2.</b> $2\cos\frac{3t}{2}\sin\frac{t}{2} = 0$
	OR	2  2
	sin2t - sint = 0	<b>5.</b> Solves $\cos \frac{2}{2} = 0$
	$2\cos\frac{3t}{2}\sin\frac{t}{2} = 0$	<b>4.</b> Solves $sin\frac{t}{2} = 0$
	3t	Low Partial Credit:
	$\cos\frac{1}{2} = 0$	• Work of merit, for example, effort to
	$t = 60^{\circ}, 180^{\circ} and 300^{\circ}$	expand sin 2t or some correct
		transposition
	$\sin \frac{1}{2} = 0$	Mid Partial Credit:
	$t = 0^{\circ} and 360^{\circ}$	• 2 steps correct
		Hiah Partial Credit:
		3 steps correct
	OR	
	Method 2 Trial & Improvement:	Full Credit –1:
	t = 0	<ul> <li>Apply a * for each solution omitted from Stop 2 or Stop 4</li> </ul>
	$\sin 0 = \sin(2(0))$	from step 5 of step 4
	0 - 0	Mothod 2
	t = 60 sin 60 = sin(2(60))	Low Partial Credit:
	$\sqrt{3}$ $\sqrt{3}$	One correct solution
	$\frac{1}{2} = \frac{1}{2}$	
	t = 180	Mid Partial Credit:
	$\sin 180 = \sin(2(180))$	3 correct values verified
	0 - 0	High Partial Credit:
	t = 300 $\sin 200 = \sin(2(200))$	4 correct values verified
	$\sin 300 = \sin(2(300))$ $\sqrt{3}  \sqrt{3}$	All values correct but no work shown
	$\overline{2} = \overline{2}$	
	t = 360	
	$\sin 360 = \sin(2(360))$	
	$\mathbf{U} = \mathbf{U}$	

Q3	Model Solution – 30 Marks	Marking Notes
(a)	Method 1	Scale 15D (0, 4, 8, 12, 15)
	( <b>4</b> , 6), (− <b>3</b> , −1), ( <b>0</b> , 11).	Method1
	• • • • -11	Low Partial Credit:
	(4, -5), (-3, -12), (0, 0)	• work of ment in translating one point to (0,0)
	$AREA = \frac{1}{2}  4(-12) - (-3)(-5) $	Mid Partial Credit:
	$=\frac{1}{2} -63 $	<ul> <li>Three points correctly translated</li> <li>Two of the given points subbed in</li> </ul>
	= 31 · 5	to the area formula and evaluated
	OR	<ul> <li>High Partial Credit</li> <li>Correct substitution into Area formula</li> <li>One error in translating points and finishes correctly</li> </ul>
	Method 2	
	Uses any one of the following formulae:	Method 2
	1. Area = $\frac{1}{2}absinc$	Low Partial Credit: • Work of merit for example finds
	2. Area = $\frac{1}{2} \times base \times perpendicular height$	one relevant piece of data eg. length of one side
		Mid Partial Credit:
		<ul> <li>All information relevant to one formula calculated, for example, the lengths of 2 sides and the included angle; or the length of one side and the perpendicular height</li> </ul>
		High Partial Credit
		<ul> <li>Correct substitution into Area formula</li> </ul>

Q3	Model Solution – 30 Marks	Marking Notes
(b) (i)	Mid-point = $\left(\frac{-1+5}{2}, \frac{k+l}{2}\right)$ = $\left(2, \frac{k+l}{2}\right)$ OR	<ul> <li>Scale 5B (0, 2, 5)</li> <li>Partial Credit: <ul> <li>Work of merit, for example, some correct substitution into relevant formula</li> </ul> </li> </ul>
	-1 to 5 is 6 steps, then $x = -1 + 3 = 2$ $k$ to $l$ is $(l - k)$ steps, then $y = k + \frac{l - k}{2} = \frac{k + l}{2}$ Mid-point $= \left(2, \frac{k + l}{2}\right)$	

Q3	Model Solution – 30 Marks	Marking Notes
(b)(ii)	Slope $AB = \frac{l-k}{5-(-1)} = \frac{l-k}{6}$ Perpendicular slope $= -\frac{6}{l-k}$ Slope of $3x + 2y - 14 = 0$ is $-\frac{3}{2}$ $-\frac{6}{l-k} = -\frac{3}{2}$ so $l-k = 4$ Eqn 1 or Slope $AB = \frac{2}{3}$ , then $(-1, k)$ and $(5, l) \in$ y = mx + c, also gives $l - k = 4$ Eqn 1	<ul> <li>Scale 10D (0, 3, 5, 8, 10)</li> <li>Low Partial Credit: <ul> <li>Work of merit, for example, relevant use of midpoint of [A, B], or finds a relevant slope (of AB or of bisector)</li> </ul> </li> <li>Mid Partial Credit: <ul> <li>Equation 1 or 2 correct found</li> <li>Finds equation of perpendicular bisector in terms of l and k</li> </ul> </li> <li>High Partial Credit: <ul> <li>Equation 1 and 2 correct found</li> </ul> </li> </ul>
	$\left(2, \frac{k+l}{2}\right) \to 3(2) + 2\left(\frac{k+l}{2}\right) - 14 = 0$	
	k + l = 8 Eqn 2	
	$\begin{cases} l+k=8\\ l-k=4 \end{cases}$	
	$2l = 12 \dots l = 6, k = 2$	
	OR	
	Slope $AB = \frac{l-k}{6}$ and perpendicular $= -\frac{6}{l-k}$	
	Eqn of perp bisector:	
	$y - \frac{k+l}{2} = -\frac{6}{l-k}(x-2)$	
	$2y - k - l + \frac{12}{l-k}x - \frac{24}{l-k} = 0$ or	
	$\frac{12}{l-k}x + 2y - k - l - \frac{24}{l-k} = 0$	
	Equating coefficients:	
	$x: \frac{12}{l-k} = 3$ so $4 = l - k$ Eqn 1	
	Const.: $-k - l - \frac{24}{l-k} = -14$	
	$-k - l - \frac{24}{4} = -14$	
	So $k + l = 8$ Eqn 2	
	Solve for $l = 6$ , $k = 2$	

Q4	Model Solution – 30 Marks	Marking Notes
(a)	Centre = (h, -3)	Scale 10C (0, 4, 7, 10)
(1)	Radius = $\sqrt{12} \text{ or } 2\sqrt{3}$	<ul> <li>Low Partial Credit:</li> <li>Work of merit towards finding x- ordinate or y-ordinate of the centre</li> <li>High Partial Credit</li> <li>Centre or radius correct</li> </ul>
(ii)	$\frac{ h-4(-3)+7 }{2} = 5$	Scale 15D (0, 4, 8, 12, 15)
	$\sqrt{(1)^2 + (-4)^2}$	3 steps:
	$ h + 19  = 5\sqrt{17}$	1. $\frac{ \mathbf{h}-4(-3)+7 }{\sqrt{(1)^2+(-4)^2}}$
	$h + 19 = 5\sqrt{17}$ or $h + 19 = -5\sqrt{17}$	$\sqrt{(1)^2 + (-4)^2}$  h-4(-3)+7  = r
	$h = 5\sqrt{17} - 19$ or $h = -5\sqrt{17} - 19$	$2. \frac{1}{\sqrt{(1)^2 + (-4)^2}} = 5$
	OR	<b>3.</b> Find values of <i>h</i>
	$(h+19)^2 = 425$	Low Partial Credit:
	$h^2 + 38h - 64 = 0$	<ul> <li>Work of merit, for example, some substitution into relevant formula.</li> </ul>
	$h = 5\sqrt{17} - 19$ or $h = -5\sqrt{17} - 19$	or draws diagram with relevant figures (5, centre marked, and line) <i>Mid Partial Credit:</i> • 1 step correct
		<ul><li>High Partial Credit:</li><li>2 steps correct</li></ul>

Q4	Model Solution – 30 Marks	Marking Notes
(b)	Centre = (h, k)	Scale 5D (0, 2, 3, 4, 5)
	$k = \frac{3-5}{2} = -1$ $(x-h)^2 + (y+1)^2 = (\sqrt{20})^2$	<ul> <li>Low Partial Credit:</li> <li>Some correct substitution of relevant point</li> </ul>
	$(x - h)^{2} + (y + 1)^{2} = (\sqrt{20})^{2}$ $x^{2} + y^{2} - 2hx + h^{2} + 2y + 1 = 20$ (8,1) is on the circle (8) ² + (1) ² - 2h(8) + h ² + 2(1) + 1 = 20 h ² - 16h + 48 = 0 (h - 4)(h - 12) = 0 h = 4, h = 12 s: (x - 4) ² + (y + 1) ² = 20 OR (a, 3): a ² + 2ga + 6f + c = -9 (a, -5): a ² + 2ga - 10f + c = -25 So: f = 1 (8, 1): 16g + 2f + c = -65 So: 16g + c = -67 Eqn A $\sqrt{g^{2} + f^{2} - c} = \sqrt{20}$ So: $g^{2} - c = 19$ Eqn B From A and B: $g^{2} + 16g + 48 = 0$ so $g = -4$ So $c = -3$	<ul> <li>Mid Partial Credit <ul> <li>Finds k = -1</li> <li>Finds f = 1</li> <li>4 independent equations in g, f, c and a</li> </ul> </li> <li>High Partial Credit: <ul> <li>k = -1 and quadratic equation in h</li> <li>Finds f = 1 and quadratic equation in g</li> </ul> </li> <li>Full Credit -1: <ul> <li>Finds the relevant constants, but equation of circle not stated</li> <li>Finds equation of circles for both values of h but does not select the correct one</li> </ul> </li> </ul>
	And eqn is $x^2 + y^2 - 8x + 2y - 3 = 0$	

Q5	Model So	lution – 30 Mark	s		Marking Notes	
(a) (i) (ii) (iii)	(i) Mean ⁰⁺³	$\frac{3+2+2+4+5+1}{7} = \frac{17}{7}$	$= 2 \cdot 42$	2	Scale 20D (0, 6, 12, 17, 20) Note: Accept correct answe supporting work	er without
	Standard	deviation = $1 \cdot 5$	9= 1.	6 [1 d.p.]	Consider solution as require 1. Mean 2. Standard deviation 3. r	ing 4 items:
	(ii) $r = -0.76204$ r = -0.762 [3 d.p.] (iii) Any valid explanation, for example: If the number of red cubes increases then there will be less green cubes		<ul> <li>4. Explanation</li> <li>Low Partial Credit:</li> <li>Work of merit, for example, finds the total number of rod cubes</li> </ul>	example, finds red cubes		
			<ul> <li>Mid Partial Credit: <ul> <li>1 item correct and way other item</li> </ul> </li> <li>High Partial Credit: <ul> <li>3 items correct</li> </ul> </li> <li>Full Credit -1</li> </ul>	vork of merit in		
					<ul> <li>One or more answe required number of</li> </ul>	rs not to decimal places
(b)		3 faces:	8		Scale 10C (0, 4, 7, 10) Accept correct answer with	out work
		2 faces:	24		Low Partial Credit: • Work of merit, for e	example, relevant
		1 face:	22		<ul> <li>work on the diagram</li> <li>One correct value</li> <li>Beference to total of</li> </ul>	n of 60 cubes
	no faces: 6		<ul> <li>High Partial Credit</li> <li>Two correct values</li> </ul>			

Q6	Model Solution – 30 Marks	Marking Notes
(a)	Answer: FALSE Justification: Describes or draws any situation where two angles are equal in size without being vertically opposite. Eg. equilateral triangle, isosceles triangle, opposite angles in a parallelogram etc.	<ul> <li>Scale 5B (0, 2, 5)</li> <li>Partial Credit: <ul> <li>Correct answer with no justification</li> <li>States True and justifies (ignores "and only if</li> </ul> </li> </ul>
(b) (i)	<b>1.</b> $ \angle EHD  =  \angle DBC  = \theta$ alternate angles $ \angle EFD  =  \angle EHD $ both $= \theta$ <b>2.</b> $ \angle FED  =  \angle HED $ rectangle & straight angle $ \angle FDE  =  \angle HDE $ angles in tri. sum to $180^{**}$	Scale 15D (0, 4, 8, 12, 15) Consider the solution as having 4 elements: 3 steps and a conclusion:
	<b>3</b> . $ ED  =  ED $ common side <b>Conclusion:</b> So $FED \equiv HED$ by ASA  FE  =  EH	Steps 1, 2 & 3: 3 correct statements for congruency (with justifications) and Conclusion (with reason)
	<b>1.</b> $ \angle EHD  =  \angle DBC  = \theta$ alternate angles $ \angle EFD  =  \angle EHD $ both $= \theta$  FD  =  DH  isosceles triangle <b>2.</b> $ \angle FED  =  \angle HED  = 90^{\circ}$ rectangle & straight angle <b>3.</b> $ ED  =  ED $ common side	<ul> <li>Note: To prove by SAS, candidates will have to establish that  ∠FDE  =  ∠HDE</li> <li>Low Partial Credit:</li> <li>Work of merit, for</li> </ul>
	<b>Conclusion:</b> So $FED \equiv HED$ by RHS  FE  =  EH  Or similar	example,  ∠EHD  =  ∠DBC  indicated Mid Partial Credit: • 2 correct steps (no iustifications)
		<ul> <li>High Partial Credit:</li> <li>3 correct steps (including one side) with at least one justification</li> <li>All 3 steps correct and conclusion stated (no justifications)</li> </ul>
		<ul> <li>Full Credit -1</li> <li> FE  =  EH  not stated</li> </ul>

Q6	Model Solution – 30 Marks	Marking Notes
(b) (ii)	$ FE  = \frac{1}{2} AB  = 10$	Scale 10D (0, 3, 5 , 8, 10) 4 steps:
	FG  = 40 $\tan \theta = \frac{ AG }{ FG } = \frac{90}{40}$ $\theta = 66 \cdot 037^{\circ}$ $\theta = 66^{\circ} \text{ [nearest degree]}$ OR	<b>1.</b> $ FE  = \frac{1}{2} AB  = 10$ <b>2.</b> Finds 2 nd side in a relevant triangle <b>3.</b> Trignometric equation set up <b>4.</b> Finds $\theta$
	$ FE  = \frac{1}{2} AB  = 10$ Triangles FED and BCD are similar So $ ED  = 90/4 = 22.5$ $\tan \theta = \frac{ ED }{ FE } = \frac{22.5}{10}$ $\theta = 66 \cdot 037^{\circ}$ $\theta = 66^{\circ}$ [nearest degree] OR	<ul> <li>Low Partial Credit:</li> <li>Work of merit in finding any side of a relevant triangle</li> <li>Mid Partial Credit <ul> <li>2 steps correct</li> </ul> </li> <li>High Partial Credit: <ul> <li>3 steps correct</li> </ul> </li> </ul>
	$ FE  = \frac{1}{2}  AB  = 10$ Triangles FED and BCD are similar So $ DC  = 90 \times \frac{3}{4} = 67.5$ $\tan \theta = \frac{ CD }{ BC } = \frac{67.5}{30}$ $\theta = 66 \cdot 037^{\circ}$ $\theta = 66^{\circ}$ [nearest degree]	<ul> <li>Incorrect rounding or no rounding</li> </ul>

Q7	Model Solution – 50 Marks	Marking Notes
(a)	$ AC ^2 + 9^2 = 70^2$	Scale 10C (0, 4, 7, 10)
	$ AC ^2 = 70^2 - 9^2$	3 steps:
	$ AC ^{-} = 4819$	1. Sets up Pythagoras
		<b>2.</b> Finds   <i>AC</i>
	Gradient = $\frac{9}{2} \times 100 = 12.96$	<b>3.</b> Finds the gradient
	$\sqrt{4819}$ =13% [nearest percent]	Low Partial Credit:
		• Work of merit, for example,
		$70^2 = 4900$ , gradient = $rac{9}{70}$
		Hiah Partial Credit
		• 2 steps correct
		Full Credit -1
		<ul> <li>Incorrect rounding or no rounding</li> </ul>
(b)	$  < POR   = 5^{\circ}$	Scale 10D (0, 3, 5, 8, 10)
	$\frac{ RO }{\sin 97} = \frac{20}{\sin 5}$	4 steps:
	20 sin 87	1. Substitution into 'sine rule'
	$ RO  = \frac{1}{\sin 5}$	2. Finds   <i>RO</i>
	$ RO  = 229 \cdot 16 \text{ m}$	<b>3.</b> Sets up trigonometric equation to solve   <i>HO</i>
	$\tan 17 = \frac{ HU }{220 - 16}$	<b>4.</b> Finds   <i>HO</i>
	229.16	Low Partial Credit:
	$ HO  = 229 \cdot 16 \tan 17$  HO  = 70 [m]	<ul> <li>Work of merit, for example, finds  &lt; POR , some correct</li> </ul>
		substitution into 'sine rule'
		Mid Partial Credit:
		2 steps correct
		High Partial Credit
		• 3 steps correct
		Full Credit -1
		Calculator in incorrect mode     No rounding or incorrect rounding

Q7	Model Solution – 50 Marks	Marking Notes
(c) (d)	(c) Range = $2 \pm 0 \cdot 4$ $a = 1 \cdot 6$ $b = 2 \cdot 4$	Scale 10D (0, 3, 5, 8, 10) Note: in (d), accept correct explanation for
	OR $V'(t) = -0 \cdot 4 \left[ \left( -\sin\frac{\pi}{2}t \right) \left( \frac{\pi}{2} \right) \right] = 0$ $\sin\frac{\pi}{2}t = 0$ $\frac{\pi}{2}t = 0  \text{or}  \frac{\pi}{2}t = \pi$	<ul> <li>breathing in or breathing out.</li> <li>Low Partial Credit: <ul> <li>Work of merit in finding either a or b</li> <li>Work of merit in part (d), for example, indicates that V' is the rate of change of volume of air</li> </ul> </li> </ul>
	t = 0 or $t = 2V(0) = 1.6$ $V(2) = 2.4a = 1 \cdot 6 b = 2 \cdot 4$	Mid Partial Credit: • (c) or (d) correct • Work of merit in both (c) and (d)
	(d) If $V'(t) > 0$ then the volume of air is increasing so she is breathing in. If $V'(t) < 0$ then the volume of air is decreasing so she is breathing out.	<ul> <li>High Partial Credit</li> <li>One part correct and work of merit in other part</li> </ul>
(e) (i)	$V(0 \cdot 5) = 2 - 0 \cdot 4 \cos \frac{\pi}{2} (0 \cdot 5)$ = 1 \cdot 7171 = 1 \cdot 717 litres [3 d.p.]	<ul> <li>Scale 5B (0, 2, 5)</li> <li>Partial Credit: <ul> <li>Some relevant substitution</li> </ul> </li> <li>Full Credit -1 <ul> <li>Calculator in incorrect mode</li> <li>No rounding or incorrect rounding</li> <li>No units or incorrect units</li> </ul> </li> </ul>
(e) (ii)	$V'(t) = -0 \cdot 4 \left[ \left( -\sin\frac{\pi}{2}t \right) \left( \frac{\pi}{2} \right) \right]$ $V'(0 \cdot 5) = 0 \cdot 4 \left( \frac{\pi}{2} \right) \left[ \sin\frac{\pi}{2} \left( 0 \cdot 5 \right) \right]$ $= 0 \cdot 4442$ $= 0 \cdot 444 \text{ litres/sec } [3 \text{ d.p.}]$	<ul> <li>Scale 10C (0, 4, 7, 10)</li> <li>Low Partial Credit: <ul> <li>Work of merit in finding V'(t)</li> </ul> </li> <li>High Partial Credit <ul> <li>V'(t) correct</li> </ul> </li> <li>Full Credit -1 <ul> <li>Calculator in incorrect mode</li> <li>No rounding or incorrect rounding</li> <li>No units or incorrect units</li> </ul> </li> </ul>

Q7	Model Solution – 50 Marks	Marking Notes
(f)	Form: $a + b \cos(ct)$ Maximum = $3 \cdot 6$ Minimum = $1 \cdot 3$ Range = $[3 \cdot 6, 1 \cdot 3]$ Mid-line = $\frac{1}{2}(3 \cdot 6 + 1 \cdot 3) = 2 \cdot 45 = a$ $b = \frac{1}{2}(3 \cdot 6 - 1 \cdot 3) = 1 \cdot 15$ Period = 2 seconds $\frac{2\pi}{c} = 2$ $c = \pi$ $E(t) = 2 \cdot 45 - 1 \cdot 15 \cos \pi t$	Scale 5D (0, 2, 3, 4, 5) Low Partial Credit: • Work of merit in finding any of $a, b$ or $c$ • Any work on graph towards finding a, b,  or  c Mid Partial Credit • One of $a, b$ or $c$ correct High Partial Credit • Two of $a, b$ or $c$ correct Full Credit -1 • $E(t) = 2 \cdot 45 + 1 \cdot 15 \cos \pi t$

Q8	Model Solution – 50 Marks	Marking Notes
(a)	$z = \frac{x - \mu}{\sigma} = \frac{3 \cdot 5 - 3 \cdot 87}{0 \cdot 36} = -1 \cdot 03$ $P(x < 3 \cdot 5)$ $= P(z < -1 \cdot 03)$ $= 1 - P(z < 1 \cdot 03)$ $= 1 - 0 \cdot 8485$ $= 0 \cdot 1515$	Scale 10D (0, 3, 5, 8, 10) 1. Find z -score 2. Find $0 \cdot 8485$ 3. Find solution Note: Accept $z = 1.03$ as correct z -score in Step 1, but must be handled correctly for Step 3 Low Partial Credit: • Work of merit, for example, some correct substitution into relevant formula, relevant diagram drawn, indicates $\mu$ or $\sigma$ Mid Partial Credit • Correct z-score or $\frac{3 \cdot 5 - 3 \cdot 87}{0 \cdot 36}$ High Partial Credit • Finds z-score and further work, for example, finds 0.8485 or indicates $1 - P(z < 1 \cdot 03)$
(b) (i)	$\bar{x} \pm 1 \cdot 96 \frac{\sigma}{\sqrt{n}}$ $3 \cdot 74 - 1 \cdot 96 \left(\frac{0 \cdot 36}{\sqrt{64}}\right) = 3 \cdot 6518$ $3 \cdot 74 + 1 \cdot 96 \left(\frac{0 \cdot 36}{\sqrt{64}}\right) = 3 \cdot 8282$ C.I. : $3 \cdot 6518 \le \mu \le 3 \cdot 8282$	<ul> <li>Scale 10C (0, 4, 7, 10)</li> <li>Note: If √64 is omitted, award Low Partial Credit at most</li> <li>Low Partial Credit: <ul> <li>Work of merit, for example, some correct substitution into relevant formula</li> </ul> </li> <li>High Partial Credit <ul> <li>Confidence interval fully substituted</li> <li>One side of interval only caculated</li> </ul> </li> </ul>

Q8	Model Solution – 50 Marks	Marking Notes
(ii)	$H_0: \mu = 3 \cdot 87$	Scale 5C (0, 2, 3, 5)
	$H_1: \mu \neq 3 \cdot 87$	Note: If $m{H_0}$ and $m{H_1}$ are reversed, treat as one error
	We reject null hypothesis.	Note: treat solution as requiring the four
	Galway players do take a different average	parts laid out in answer grid
	number of attempts.	Low Partial Credit:
		correct calculation
	Confidence Interval: $3 \cdot 6518 \le \mu \le 3 \cdot 8282$	High Partial Credit:
	3 · 87 is NOT within the confidence interval	Two parts correct
	OR	
	Test statistic: $z = \frac{3.74 - 3.87}{\frac{0.36}{\sqrt{64}}} = -2.89$	
	$-2 \cdot 89 < -1 \cdot 96$ so test statistic is in the critical zone of rejection	
	OR	
	Test statistic: $z = \frac{3 \cdot 74 - 3 \cdot 87}{\frac{0 \cdot 36}{\sqrt{64}}} = -2 \cdot 89$	
	$P(z \le -2 \cdot 89) = 0 \cdot 9981$	
	p-value:	
	$2 \times P(z < -2 \cdot 89) = 2(0.0019) = 0 \cdot 0038$	
	$0 \cdot 0038 < 0 \cdot 05$	

Q8	Model Solution – 50 Marks	Marking Notes
(c)	$\hat{p} + 1 \cdot 96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0 \cdot 435$	Scale 10D (0, 3, 5, 8, 10) 4 steps:
	$0.35 + 1.96\sqrt{\frac{0.35(1 - 0.35)}{n}} = 0.435$ $0.2275 - 0.435 - 0.35$	1. $1.96\sqrt{\frac{0.35(1-0.35)}{n}}$ 2. Finds 0.085 or equivalent 3. Sets up equation
	$ \sqrt{\frac{n}{n}} = \frac{0 \cdot 100 - 0 \cdot 00}{1 \cdot 96} $ $ \frac{0 \cdot 2275}{n} = \left(\frac{0 \cdot 085}{1 \cdot 96}\right)^{2} $ $ \frac{0 \cdot 2275}{\left(\frac{0 \cdot 085}{1 \cdot 96}\right)^{2}} = n $ $ n = 120.963. $ $ n = 121 $	4. Solves Note: If margin of error is used ie. $E = \frac{1}{\sqrt{n}}$ award Mid Partial Credit at most <i>Low Partial Credit:</i> • Some correct substitution into relevant formula <i>Mid Partial Credit</i> • 2 correct steps <i>High Partial Credit</i> • 3 correct steps <i>Full Credit -1</i> • Incorrect rounding



(d)	Method 1	Scale 5C (0, 2, 3, 5)
(11)	Total players= 186624 + 12960 + 12960 + 900	Method 1
	= 213444	3 steps:
	Lost on $1^{st}$ and/or $2^{nd} = 12960 + 12960 + 900$	<ol> <li>Finds the total number of players who played on all three days</li> </ol>
	= 26820	2. Finds the number of players who lost
	$\frac{26820}{26820} - \frac{745}{26820}$	3. Finds probability
	213444 5929	Low Partial Credit:
	OR	<ul> <li>Work of merit in finding total players or number of players who lost</li> </ul>
		High Partial Credit: • 2 steps correct
	Mathad 2	Method 2
		Low Partial Credit:
	$P(win, win) = \frac{186624}{213444}$	• Work of merit, for example, finds
	1 186624	the total number of players who
	$1 - P(win, win) = 1 - \frac{1}{213444}$	played on all three days
	26820745	$\begin{array}{c} \text{High Partial Creat:} \\ 1 & 186624 \end{array}$
	$-\frac{1}{213444} - \frac{1}{5929}$	• $1 - P(Win, Win) = 1 - \frac{1}{213444}$
	Method 3	Method 3
	324	Low Partial Credit
	$P(\text{win, play, win, play}) = 0.8 \times 0.9 \times 0.8 \times 0.9 = \frac{1}{625}$	• Work of merit, for example, $0.2 \times$
	$P(\text{win, play, lose, play}) = 0.8 \times 0.9 \times 0.2 \times 0.25 = \frac{9}{250}$	$0.25 \times 0.8 \times 0.9$
	250	High Partial Credit
	$P(\text{lose, play, win, play}) = 0.2 \times 0.25 \times 0.8 \times 0.9 = \frac{1}{250}$	• $\frac{9}{250} + \frac{9}{250} + \frac{1}{400}$ or equivalent
	$P(\text{lose, play, lose, play}) = 0.2 \times 0.25 \times 0.2 \times 0.25 = \frac{1}{400}$	• $\frac{324}{625} + \frac{9}{250} + \frac{9}{250} + \frac{1}{400}$ or equivalent
	P(lost on 1st and/or 2nd, given that they played 3 days) =	
	$\frac{9}{250} \pm \frac{9}{250} \pm \frac{1}{400}$ 745	
	$\frac{\frac{250}{324} + \frac{9}{250} + \frac{9}{250} + \frac{1}{400}}{\frac{9}{250} + \frac{1}{400}} = \frac{713}{5929}$	
1		

Q9	Model Solution – 50 Marks	Marking Notes
(a) (i)	Square: $l^2 = 140$ $l = \sqrt{140} = 11.83$ l = 11.8  cm [1 d.p.]	<ul> <li>Scale 5B (0, 2, 5)</li> <li>Partial Credit: <ul> <li>l² = 140</li> </ul> </li> <li>Full Credit -1 <ul> <li>Incorrect rounding, or no rounding</li> <li>No unit or incorrect unit</li> </ul> </li> </ul>

Q9	Model Solution – 50 Marks	Marking Notes
(a) (ii)	Hexagon: $\frac{140}{6}$ area of one triangle $\frac{1}{2}x^2 \sin 60 = \frac{140}{6}$ $x^2 = \frac{140}{3\sin 60}$ $x = \sqrt{\frac{140}{3\sin 60}} = \sqrt{\frac{280}{3\sqrt{3}}}$ $x = 7 \cdot 34 \dots = 7.3$ [cm] [1 d.p.] OR Hexagon: $\frac{140}{6}$ area of one triangle Let $h$ = perpendicular height of one triangle $h^2 + (\frac{1}{2}x)^2 = x^2$ $h^2 = \frac{3}{4}x^2$ $h = \frac{\sqrt{3}}{2}x$ $\frac{1}{2} \times x \times \frac{\sqrt{3}}{2}x = \frac{140}{6}$ $x^2 = \frac{280}{3\sqrt{3}}$ $x = 7.34 \dots = 7.3$ [cm] [1 d.p.] OR Total Area = area of two identical trapeziums $140 = 2(\frac{x+2x}{2})\frac{\sqrt{3}}{2}x \dots h$ calculated above $140 = \frac{3\sqrt{3}}{2}x^2$ $x^2 = \frac{280}{3\sqrt{3}}$ $x = 7.34 \dots = 7.3$ [cm] [1 d.p.]	<ul> <li>Scale 10C (0, 4, 7, 10)</li> <li>Accept correct answer without units</li> <li>Low Partial Credit: <ul> <li>Work of merit, for example, finds area of one triangle; finds the area of one trapezium, work towards finding perpendicular height</li> </ul> </li> <li>High Partial Credit: <ul> <li>Equation in x formed</li> </ul> </li> <li>Full Credit -1 <ul> <li>No rounding or incorrect rounding</li> </ul> </li> </ul>

Q9	Model Solution – 50 Marks	Marking Notes
(b) (i)	$4^{2} = 6^{2} + 8^{2} - 2(6)(8) \cos \alpha$ $\cos \alpha = \frac{6^{2} + 8^{2} - 4^{2}}{2(6)(8)}$ $\cos \alpha = \frac{84}{96} = \frac{7}{8}$ $\alpha = \cos^{-1}\frac{7}{8}$	Scale 10C (0, 4, 7, 10) Low Partial Credit: • Correct formula with some substitution High Partial Credit • $\cos \alpha = \frac{6^2+8^2-4^2}{2(6)(8)}$ or equivalent • $16 = 100 - 96\cos \alpha$ • Uses the cosine rule to find either $\angle ADE$ or $\angle DEA$
(b) (ii)	$\cos \alpha = \frac{8}{ AC } = \frac{7}{8}  \text{so}   AC  = \frac{64}{7}$ $ CD  = \sqrt{\left(\frac{64}{7}\right)^2 - 8^2} = \frac{8\sqrt{15}}{7}$ $\text{Area} = 2\left[\frac{1}{2}(8)\left(\frac{8\sqrt{15}}{7}\right)\right]$ $= \frac{64\sqrt{15}}{7} = 35.410 = 35.41 \ cm^2 \qquad [2 \ d.p.]$ $OR$ $\alpha = 28 \cdot 955^{\circ}$ $ AC  = \frac{64}{7}$ $\text{Area} = 2\left[\frac{1}{2}(8)\left(\frac{64}{7}\right)\sin 28 \cdot 96\right] = 35 \cdot 410$ $= 35.41 \ cm^2 \qquad [2 \ d.p.],$ $OR$ $\alpha = 28 \cdot 955^{\circ}$ $\tan 28.955 = \frac{ CD }{8}$ $ CD  = 4.426$ $\text{Area} = 2\left[\frac{1}{2} \times 8 \times 4.426\right] = 35.410 \dots$ $= 35.41 \ cm^2 \qquad [2 \ d.p.]$	<ul> <li>Scale 10D (0, 3, 5, 8, 10)</li> <li>Low Partial Credit: <ul> <li>Work of merit in finding a relevant side or angle</li> </ul> </li> <li>Mid Partial Credit: <ul> <li>Correctly finds relevant sides and/or angles to allow for area to be found, for example,  CD , or α and  AC </li> </ul> </li> <li>High Partial Credit <ul> <li>Correctly filled formula for area of triangle ACD</li> </ul> </li> <li>Full Credit -1 <ul> <li>No rounding or incorrect rounding</li> <li>No unit or incorrect unit</li> </ul> </li> </ul>

Q9	Model Solution – 50 Marks	Marking Notes
(c) (i)	Verifies point, for example: $Q = (\cos 135^\circ, \sin 135^\circ)$ [unit circle] $= \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ OR Let co-ordinates of $Q = (x, y)$ $\cos 45^\circ = \frac{x}{1} = \frac{1}{\sqrt{2}} \implies x = -\frac{1}{\sqrt{2}}$ [2 nd quadrant] $\sin 45^\circ = \frac{y}{1} \implies y = \frac{1}{\sqrt{2}}$ OR Shows that $ \angle QOP  = 45^\circ$ and that distance from $Q$ to $(0, 0)$ is 1, or that $Q$ lies on $c$ OR $x^2 + y^2 = 1$ y = -x $\therefore x^2 + x^2 = 1$ $2x^2 = 1$ $x = \pm \frac{1}{\sqrt{2}}$ But $x$ in 2 nd quadrant. $\therefore x = \frac{-1}{\sqrt{2}}$ , and $y = \frac{1}{\sqrt{2}}$ ,	<ul> <li>Scale 5B (0, 2, 5)</li> <li>Note: Check drawing for relevant work of merit</li> <li><i>Partial Credit:</i> <ul> <li>Work of merit in finding x or y ordinate</li> </ul> </li> </ul>

(c) (ii)	Method 1	Scale 10C (0, 4, 7, 10)
	P = (-1, 0) Tangent at $P: x = -1$	Consider the solution as having three
	$Q = \left(-rac{1}{\sqrt{2}},rac{1}{\sqrt{2}} ight)$ Slope of tangent at $Q = 1$	steps:
	Tangent at <i>Q</i> : $y - \frac{1}{\sqrt{2}} = 1(x\frac{1}{\sqrt{2}})$	<b>1.</b> Finds that the <i>x</i> co-ordinate of the
	$y = x + \sqrt{2}$	centre = $-1$
	At $x = -1$ : $y = -1 + \sqrt{2}$	<b>2.</b> Indicates that the y co-ordinate of the control $-\pi$ the radius of size $\pi$
	Centre = $(-1, -1 + \sqrt{2})$ Radius = $-1 + \sqrt{2}$	<b>3.</b> Finds $r$
	OR	
		Low Partial Credit:
	Method 2	<ul> <li>Work of merit, for example, any relevant work on the diagram</li> </ul>
	$22 \cdot 5^{\circ}$	High Partial Credit
	$r = \tan 22 \cdot 5^\circ$ $P$ 1	Two steps correct
	$\tan 45^\circ = \frac{2\tan 22 \cdot 5^\circ}{1 - \tan^2 22 \cdot 5^\circ}$	
	$1 = \frac{2r}{1 - r^2}$	
	$r^2 + 2r - 1 = 0$	
	$r = \frac{-2 \pm \sqrt{2^2 - 4(1)(-1)}}{2(1)}$	
	$r = -1 + \sqrt{2}$	
	Centre = $(-1, -1 + \sqrt{2})$ Radius = $-1 + \sqrt{2}$	
	OR	
	Method 3	
	Let $(-1, k)$ be centre of s	
	$(-1,0)$ to $(-1,k) = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ to $(-1,k)$	
	$k = \sqrt{\left(-1 - \left(-\frac{1}{\sqrt{2}}\right)\right)^2 + \left(k - \left(\frac{1}{\sqrt{2}}\right)\right)^2}$	
	$k = \sqrt{\frac{3 - 2\sqrt{2}}{2} + \frac{2k^2 - 2\sqrt{2}k + 1}{2}}$	
	$2k^2 = 4 - 2\sqrt{2} - 2\sqrt{2}k + 2k^2$	
	$2\sqrt{2}k = 4 - 2\sqrt{2}$	
	$k = \frac{4 - 2\sqrt{2}}{2\sqrt{2}} = -1 + \sqrt{2}$	
	Centre = $(-1, -1 + \sqrt{2})$ Radius = $-1 + \sqrt{2}$	

Q10	Model Solution – 50 Marks	Marking Notes
(a)(i)	$\frac{x}{12} = \frac{x+10}{15} \dots \text{ or equivalent}$	Scale 10C (0, 4, 7, 10)
	15x = 12x + 120	Low Partial Credit: • Work of merit in establishing
	3x = 120	equation
	x = 40  [cm]	High Partial Credit:
	OR	• Correct equation set up • $\frac{40}{12} = \frac{50}{15}$ or equivalent
	$\frac{40}{12} = \frac{50}{15}$ or equivalent	
	600 = 600	
(a)(ii)	Large cone: $R = 15$ , $L = 50$	Scale 15D (0, 4, 8, 12, 15)
	Small cone: $r = 12$ , $l = 40$	Note: Candidate may use $\pi(r+R)l$ ,
	Surface area = $\pi RL - \pi rl + \pi r^2$	where $l = 10$ to find the curved surface area
	$= \pi(15)(50) - \pi(12)(40) + \pi(12)^2$	Low Partial Credit:
	$= 750\pi - 480\pi + 144\pi = 414\pi$	• Some correct substitution into
	$1300 \cdot 61 = 1300.6 \text{ cm}^2$ [1d.p.]	• $\pi RL$ or $\pi rl$ or $\pi r^2$ • $\pi RL - \pi rl + \pi r^2$
		• $\pi RL - \pi rl$
		Mid Partial Credit
		• One of $\pi RL$ or $\pi rl$ or $\pi r^2$ fully substituted and calculated
		• Fully correct substitution in to
		$\pi RL - \pi rl$
		• <i>nRL</i> – <i>nn</i> + <i>nn</i> with some substitution
		High Partial Credit
		• $\pi RL - \pi rl + \pi r^2$ fully substituted
		Full Credit -1
		<ul><li>No rounding or incorrect rounding</li><li>No unit or incorrect unit</li></ul>

Q10	Model Solution – 50 Marks	Marking Notes
(a)(iii)	Angle: $\frac{\theta}{360} 2\pi(40) = 2\pi(12)$	Scale 5D (0, 2, 3, 4, 5)
	$\theta = 108^{\circ}$	Three measurements required: angle subtended at the centre and 2 relevant lengths of line segments
40	<ul> <li>Low Partial Credit:</li> <li>Net of a cone drawn</li> <li>Work of merit in calculating angle.</li> <li>Correct structure but no measurements or incorrect measurements given</li> </ul>	
	50	<ul> <li>Mid Partial Credit</li> <li>Correct structure with one correct measurement given</li> <li>Angle correctly calculated</li> </ul>
		<ul> <li>High Partial Credit</li> <li>Correct structure with one incorrect measurement</li> </ul>

(b)(i)	$9 \times 8 \times 7 \times 6 = 3024$	Scale 5B (0, 2, 5)
	OR	Note: Accept correct answer without work
	$9C_4 \times 4! = 3024$	<ul> <li>Partial Credit:</li> <li>Work of merit, for example, lists some correct code</li> <li>Full Credit-1 <ul> <li>9 × 9 × 9 × 9 evaluated</li> <li>10 × 9 × 8 × 7 evaluated</li> </ul> </li> </ul>
(b)(ii)	$4(1 \times 8 \times 7 \times 6) = 1344$	Scale 5C (0, 2, 3, 5)
	OR No 2: $8 \times 7 \times 6 \times 5 = 1680$ 3024 - 1680 = 1344 OR Of the 3024 codes: $\frac{1}{9}$ of them begin with a	Note: Accept correct answer without work Low Partial Credit: • Work of merit, for example, lists some correct codes, brings answer from b(i) down to b(ii) High Partial Credit: • $1 \times 8 \times 7 \times 6$ or $\frac{1}{9} \times 3024$ • $1680$
	'2', $\frac{1}{9}$ of them have a '2' in the 2 nd position Therefore, number of codes that contain the digit 2 $=\frac{1}{9} \times 3024 \times 4$	
(b) (iii)	1 + 2 + 3 = 6 1 + 2 + 4 = 7 1 + 2 + 5 = 8 1 + 2 + 6 = 9 1 + 3 + 4 = 8 1 + 3 + 5 = 9 2 + 3 + 4 = 9 7 possible combinations with 6 possible arrangements of each So 7 × 6 or 7 × 3! = 42	<ul> <li>Scale10C (0, 4, 7, 10)</li> <li>Low Partial Credit: <ul> <li>Work of merit in listing some codes</li> </ul> </li> <li>High Partial Credit: <ul> <li>All 7 combinations listed</li> <li>One correct combination and mentions 3! or 6 possible arrangements</li> </ul> </li> </ul>