Paper 2: Marking Scheme

Structure of the marking scheme

Candidate responses are marked according to different scales, depending on the types of response anticipated. Scales labelled A divide candidate responses into two categories (correct and incorrect). Scales labelled B divide responses into three categories (correct, partially correct, and incorrect), and so on. The scales and the marks that they generate are summarised in this table:

Scale label	B	C	D
No of categories	3	4	5
5-mark scale	$0,2,5$	$0,2,3,5$	
10-mark scale		$0,3,7,10$	$0,3,5,8,10$
15-mark scale			$0,4,8,12,15$
20-mark scale			$0,5,10,15,20$

A general descriptor of each point on each scale is given below. More specific directions in relation to interpreting the scales in the context of each question are given in the scheme, where necessary.

Marking scales - level descriptors

B-scales (three categories)

- response of no substantial merit (no credit)
- partially correct response (partial credit)
- correct response (full credit)

C-scales (four categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

D-scales (five categories)

- response of no substantial merit (no credit)
- response with some merit (low partial credit)
- response about half-right (mid partial credit)
- almost correct response (high partial credit)
- correct response (full credit)

In certain cases, typically involving incorrect rounding, omission of units, a misreading that does not oversimplify the work, or an arithmetical error that does not oversimplify the work, a mark that is one mark below the full-credit mark may also be awarded. Such cases are denoted with a * and this level of credit is referred to as Full Credit -1. Thus, for example, in Scale 10C, Full Credit -1 of 9 marks may be awarded.

The only marks that may be awarded for a question are those on the scale above, or Full Credit -1. A rounding penalty is applied only once in each section (a), (b), (c) etc. It is explicitly indicated in the scheme where penalties for incorrect or omitted units are to be applied. There is no penalty for omitted units if the question specifies the unit to be used in the answer, and there is generally no penalty for an omitted euro symbol in questions involving money.

In general, accept a candidate's work in one part of a question for use in subsequent parts of the question, unless this oversimplifies the work involved.

Summary of mark allocations and scales to be applied

Section A (120)		Section B (100)	
Question 1 (30)	Question 4 (30)	Question 7 (50)	Question 9 (50)
(a) 15D	(a)(i) 10 C	(a) 5C	(a)(i) 10D
(b) 10C	(a)(ii) 10D	(b) 15 D	(a)(ii) 10D
(c) 5 C	(b) 10D	(c) 10D	(b)(i) 5C
		(d) 5 C	(b)(ii) 10C
Question 2 (30)	Question 5 (30)	(e) 10 C	(b)(iii) 5C
(a) 10 C			(b)(iv) 5C
(b) 10 D	(a)(ii) 5B		(b)(v) 5C
(c)(i) 5 C	(b) 10 C	Question 8 (50)	
(c)(ii) 5 C		(a)(i) 10D	Question 10 (50)
		(a)(ii) 10D	(a)(i) 10D
Question 3 (30)	Question 6 (30)	(b)(i) 5C	(a)(ii) 10C
(a) 15 D		(b)(ii) 10D	(a)(iii) 10D
(b)(i) 10D		(c)(i) 10D	(b) 10 C
(b)(ii) 5B		(c)(ii) 5C	(c) 10 D

Palette of annotations available to examiners

Symbol	Name	Meaning in the body of the work	Meaning when used in the right margin
	Tick	Work of relevance	The work presented in the body of the script merits full credit
Cross	Star	Incorrect work (distinct from an error)	The work presented in the body of the script merits 0 credit
*	Tick L	Rounding / Unit / Arithmetic error Misreading	
Error	Horizontal wavy	Tick M	Tick H

Note: Where work of substance is presented in the body of the script, the annotation on the right margin should reflect a combination of annotations in the work
In a C scale where $*$ and \sim and $\sim \sim$ appear in the body of the work, then 1 should be placed in the right margin.
In the case of a \mathbf{D} scale with the same annotations, \mathbf{m} should be placed in the right margin.
A in the body of the work may sometimes be used to indicate where a portion of the work presented has value and has merited one of the levels of credit described in the marking scheme. The level of credit is them indicated in the right margin.

Detailed marking notes

Model Solutions \& Marking Notes

Note: The model solutions for each question are not intended to be exhaustive - there may be other correct solutions. Any Examiner unsure of the validity of the approach adopted by a particular candidate to a particular question should contact his / her Advising Examiner.

Q1	Model Solution - $\mathbf{3 0}$ Marks	Marking Notes
(a)	$\begin{gathered} 11 \times 0 \cdot 15^{1} \times 0 \cdot 85^{10}=0 \cdot 3248 \ldots \\ =0 \cdot 325 \text { [3 D.P.] } \end{gathered}$ OR $\begin{gathered} 11 \times \frac{3}{20} \times\left(\frac{17}{20}\right)^{10}=0.3248 \ldots \\ \quad=0 \cdot 325 \text { [3 D.P.] } \end{gathered}$	Scale 15D (0, 4, 8, 12, 15) Note: multiplication between relevant terms is necessary to be awarded above Low Partial Credit Low Partial Credit: - 0.15 or 0.85 or $\frac{3}{20}$ or $\frac{17}{20}$ or 11 - x^{10} where $0<x<1$ Mid Partial Credit: - Three terms multiplied, two correct, from 11, $\left(0 \cdot 15^{1}\right)$, and $\left(0 \cdot 85^{10}\right)$ - $\left(0 \cdot 15^{1}\right) \times\left(0 \cdot 85^{10}\right)$ High Partial Credit: - $11 \times 0.15^{1} \times 0.85^{10}$ or equivalent - $\left(0 \cdot 15^{1}\right) \times\left(0 \cdot 85^{10}\right)$ evaluated [0-0295 ...]
(b)	$\begin{aligned} & P(0 \text { or } 1 \text { or } 2 \text { left-footed }) \\ & =0.85^{11}+\binom{11}{1} \times 0.15^{1} \times 0.85^{10} \\ & \quad+\binom{11}{2} \times 0.15^{2} \times 0.85^{9} \\ & =0.1673 \ldots+0.3248 \ldots+0.2866 \ldots \\ & =0.7787 \ldots \\ & =0.78 \text { [2 D.P.] } \end{aligned}$	Scale 10C (0, 3, 7, 10) Low Partial Credit: - First line of solution - 0.15 or 0.85 or $\frac{3}{20}$ or $\frac{17}{20}$ or $\binom{11}{1}$ High Partial Credit: - Two out of $P(0), P(1), P(2)$ fully substituted

Q1	Model Solution - $\mathbf{3 0}$ Marks	Marking Notes
(c)	From 10, P (0 or 1 or 2 left-footed) $\begin{aligned} &=0.85^{10}+\binom{10}{9} \times 0.15^{1} 0.85^{9} \\ &+\binom{10}{8} \times 0.15^{2} 0.85^{8} \\ &= 0.1968 \ldots+0.3474 \ldots+0.2758 \ldots \\ &= 0.82019 \ldots \\ & \quad=0.82[2 \text { D.P.] } \end{aligned}$	Scale 5C (0, 2, 3, 5) Note: Accept 82.02\% Low Partial Credit: - First line of solution - 0.15 or 0.85 or $\frac{3}{20}$ or $\frac{17}{20}$ or $\binom{10}{1}$ High Partial Credit: - Two out of $P(0), P(1), P(2)$ fully substituted

Q2	Model Solution - 30 Marks	Marking Notes
(a)	$\begin{aligned} & 3 k-6\left(\frac{2 k+2}{3}\right)+2=0 \\ & \Rightarrow 3 k-4 k-4+2=0 \\ & \Rightarrow k=-2 \end{aligned}$	Scale 10 C (0, 3, 7, 10) Low Partial Credit: - Some substitution into equation of line High Partial Credit: - Equation of line fully substituted
(b)	$\begin{aligned} & s-2 t-8=0 \text { so } s=2 t+8 \\ & \frac{\|4 s+3 t+6\|}{\sqrt{4^{2}+3^{2}}=1} \\ & \frac{\|8 t+32+3 t+6\|}{5}=1 \\ & \|11 t+38\|=5 \\ & 11 t+38=5 \quad \text { or } \quad 11 t+38=-5 \\ & \therefore t=-3 \quad \text { or } \quad \therefore t=-\frac{43}{11} \\ & \therefore s=2 \quad \text { or } \quad \therefore s=\frac{2}{11} \\ & \frac{\|4 s+3 t+6\|}{\sqrt{4^{2}+3^{2}}=1} \begin{array}{l} \|4 s+3 t+6\|=5 \\ 4 s+3 t=-1 \quad \text { or } \\ 4 s \end{array} \\ & \hline 4 s+3 t=-11 \end{aligned}$ Intersection of either with $s-2 t=8$: $s=2, \quad t=-3 \quad \text { or } \quad s=\frac{2}{11}, t=-\frac{43}{11}$	Scale 10D (0, 3, 5, 8, 10) Note: Only one pair of s and t required. Low Partial Credit: - Some substitution of (s, t) into equation of line - Some substitution into distance of point to line formula - Finds one co-ordinate of point of intersection of two given lines - Correct answer without work Mid Partial Credit: - Full substitution of s and t into both (1) the equation of the line and (2) the equation of the distance of a point to a line formula - $4 s+3 t=-1$ or $4 s+3 t=-11$ High Partial Credit: - $\frac{\|8 t+32+3 t+6\|}{5}=1$, or similar - $(4 s+3 t=-1$ or $4 s+3 t=-11)$ and $s-2 t=8$

Q2	Model Solution - 30 Marks	Marking Notes
$\begin{aligned} & \hline \text { (c) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \|A C\|=\sqrt{12^{2}+9^{2}}=15 \\ & \|A D\|=\frac{2}{3}(15)=10 \end{aligned}$ OR $\begin{gathered} \left(\frac{2 \times 16+1 \times 4}{2+1}, \frac{2 \times 11+1 \times 2}{2+1}\right) \\ =D(12,8) \\ \|A D\|=\sqrt{(12-8)^{2}+(8-2)^{2}}=10 \end{gathered}$ OR Let D be (x, y). Then $\left(\frac{3 x-1 \times 4}{3-1}, \frac{3 y-1 \times 2}{3-1}\right)=(16,11)$ So $D=(x, y)=(12,8)$ $\|A D\|=\sqrt{8^{2}+6^{2}}=10$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Some substitution into formula for $\|A C\|$ - Some substitution into formula for D - Identifies relevant translation High Partial Credit: - $\|A C\|=15$ found - D found and $\|A D\|$ fully substituted
(c) (ii)	$\|A B\|=33 \Rightarrow B \text { is }(37,2)$ The translation $\overrightarrow{C B}: x$ increases by 21 $x_{E}=16+\frac{1}{3}(21)=23$ The translation $\overrightarrow{C B}: y$ decreases by 9 $y_{E}=11-\frac{1}{3}(9)=8$ So $E=(23,8)$. OR $\begin{gathered} \left(\frac{2 \times 16+1 \times 37}{2+1}, \frac{2 \times 11+1 \times 2}{2+1}\right) \\ =E(23,8) \end{gathered}$ OR $D E$ and $A B$ parallel \therefore equation $D E: y=8$ Then x coordinate by translation or ratio or equation $B C \cap D E=23$	Scale 5C (0, 2, 3, 5) Note: finding slant distances alone is not given credit Low Partial Credit: - One co-ordinate of B or E found - $\|D E\|=11$ High Partial Credit: - B found and some work towards finding E - E found

Q3	Model Solution - 30 Marks	Marking Notes
(a)	$\begin{aligned} & \|D B\|=\frac{1}{2}(4 \sqrt{3})=2 \sqrt{3} \\ & \|C D\|=\sqrt{4^{2}+2^{2}}=\sqrt{20} \text { or } 2 \sqrt{5} \\ & \text { Radius }=\|C B\| \\ & \\ & \\ & =\sqrt{(2 \sqrt{5})^{2}+(2 \sqrt{3})^{2}}=4 \sqrt{2} \end{aligned}$	Scale 15D (0, 4, 8, 12, 15) Low Partial Credit: - $\|D B\|$ (or $\|D A\|$) found - Pythagoras' Theorem with some relevant substitution - Right angle indicated at D; [AC] or [BC] drawn, and length r indicated Mid Partial Credit: - $\|C D\|$ found - $\|D B\|$ found and Pythagoras' Theorem with some relevant substitution High Partial Credit: - $\|D B\|$ and $\|C D\|$ found
$\begin{array}{\|l\|} \hline \text { (b) } \\ \text { (i) } \end{array}$	$\begin{aligned} & x^{2}+y^{2}+4 x-2 y-95=0 \\ & \text { Centre }(-2,1) . \text { Radius }=10 \\ & (x-7)^{2}+(y-13)^{2}=25: \\ & \text { Centre }(7,13) . \text { Radius }=5 \\ & r_{1}+r_{2}=15 \end{aligned}$ Distance between the two centres: $\sqrt{12^{2}+9^{2}}=\sqrt{225}=15$ Touch Externally since $r_{1}+r_{2}=$ distance between two centres.	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - Either centre or either radius found Mid Partial Credit: - Finds two from the following four: two centres and two radii High Partial Credit: - Both centres and both radii found Full Credit -1: - Both centres and both radii and distance between the centres found but no or incorrect conclusion

Q3	Model Solution - 30 Marks	Marking Notes
(b) (ii)	Accept any point on the line $y=\frac{4 x+11}{3}$ for which $x>4$. Slope of the two centres: $\frac{13-1}{7+2}=\frac{4}{3}$ For example: $\left(7+1,13+\frac{4}{3}\right)=\left(8,14 \frac{1}{3}\right)$ OR $(-2,1) \rightarrow(7,13)$ given by $x:+9, y:+12$ $\text { So }(7,13) \rightarrow(7+9,13+12)=(16,25)$ OR Any circle that touches c at that point must be on l (i.e. line through the two centres). Slope of the two centres: $\frac{13-1}{7+2}=\frac{4}{3}$ $\begin{aligned} & y-1=\frac{4}{3}(x+2) \\ & l: 4 x-3 y+11=0 \end{aligned}$ now sub $x=10$ $\Rightarrow y=17$ One centre $=(10,17)$.	Scale 5B (0, 2, 5) Note: no credit is awarded for just identifying either/both centres. Partial Credit: - Work of merit, for example: identifies that the point must be on the line containing the two centres; clearly recognises that $x>4$ or $y>9$; finds the point (4,9), or either ordinate; finds slope of line containing two centres Full Credit -1: - Answer as another point on the line joining the centres, but with $x<4$ (i.e. touches internally)

Q4	Model Solution - 30 Marks	Marking Notes
(a) (i)	$\begin{aligned} & \cos (A+B)=\cos A \cdot \cos B-\sin A \cdot \sin B \\ & \cos (A+A)=\cos A \cdot \cos A-\sin A \cdot \sin A \\ & \cos (2 A)=\cos ^{2} A-\sin ^{2} A \end{aligned}$	Scale $10 \mathrm{C}(0,3,7,10)$ Low Partial Credit: - $\cos (A+B)$ formula with some substitution - Tested with one or more values of A High Partial Credit: - $\cos (A+A)$ $=\cos A \cdot \cos A-\sin A \cdot \sin A$
(a) (ii)	$\begin{aligned} & \cos 2 A=\cos ^{2} A-\sin ^{2} A \\ & \Rightarrow \cos \theta=\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2} \end{aligned}$ using a right-angled triangle $\cos \frac{\theta}{2}=\frac{2}{\sqrt{5}}$ $\cos \theta=\left(\frac{2}{\sqrt{5}}\right)^{2}-\left(\frac{1}{\sqrt{5}}\right)^{2}=\frac{3}{5}$ OR $\begin{aligned} \cos \theta & =\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2} \\ & =\left(1-\sin ^{2} \frac{\theta}{2}\right)-\sin ^{2} \frac{\theta}{2} \\ & =1-2 \sin ^{2} \frac{\theta}{2} \\ & =1-2\left(\frac{1}{\sqrt{5}}\right)^{2}=\frac{3}{5} \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - $\cos \theta=\cos ^{2} \frac{\theta}{2}-\sin ^{2} \frac{\theta}{2}$ - Valid work to find $\cos \frac{\theta}{2}$ from $\sin \frac{\theta}{2}$ - Some relevant substitution Mid Partial Credit - Finds $\cos \frac{\theta}{2}=\frac{2}{\sqrt{5}}$. Also accept $\begin{aligned} \cos \frac{\theta}{2} & =\cos \left(\sin ^{-1} \frac{1}{\sqrt{5}}\right)=0.8944 \ldots \\ -\cos \theta & =\left(1-\sin ^{2} \frac{\theta}{2}\right)-\sin ^{2} \frac{\theta}{2} \end{aligned}$ High Partial Credit: - $\cos \theta$ formula fully substituted

Q4	Model Solution - 30 Marks	Marking Notes
(b)	$\begin{aligned} & \tan (\text { angle })=-\sqrt{3}, \text { so reference angle }=60^{\circ} \\ & \mathbf{1 5 0}^{\circ} \leq \boldsymbol{B}+\mathbf{1 5 0}^{\circ} \leq \mathbf{5 1 0}^{\circ} \end{aligned}$ In Quad's 2 or 4, so angles are $\mathbf{3 0 0}^{\circ}$ or $\mathbf{4 8 0}^{\circ}$ $\begin{aligned} & \quad B+150=300 \quad \text { or } B+150=480 \\ & \text { So } B=150^{\circ} \quad \text { or } B=330^{\circ} \\ & \text { OR } \\ & \begin{aligned} \tan (B+150) & =\frac{\tan B+\tan 150}{1-\tan B \tan 150} \\ & =\frac{\tan B-\frac{1}{\sqrt{3}}}{1+\left(\frac{1}{\sqrt{3}}\right) \tan B}=-\sqrt{3} \end{aligned} \end{aligned}$ So $\tan B-\frac{1}{\sqrt{3}}=-\sqrt{3}-\tan B$ So $2 \tan B=-\frac{2}{\sqrt{3}}$, i.e. $\tan B=-\frac{1}{\sqrt{3}}$ Reference angle $=30^{\circ}$ In Quad's 2 or 4 , so $B=150^{\circ}$ or $B=330^{\circ}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - Reference angle $=60^{\circ}$ - Correct range for $B+150^{\circ}$ - Quadrants 2 and 4 identified - $\tan (A+B)$ formula with some substitution Mid Partial Credit: - 300° or 480° - Solution to equation outside of required range (for e.g., $B=-30^{\circ}$ or -210°) - $\frac{\tan B+\tan 150}{1-\tan B \tan 150}=-\sqrt{3}$ High Partial Credit: - $B=150^{\circ}$ or $B=330^{\circ}$ - 300° and 480°

Q5	Model Solution - 30 Marks	Marking Notes
(a) (i)	$\begin{aligned} & V_{\text {sphere }}=\frac{4}{3} \pi r^{3} \\ & \begin{aligned} V_{\text {cone }} & =\frac{1}{3} \pi r^{2} h \\ V_{\text {space }} & =\frac{4}{3} \pi r^{3}-2 \cdot \frac{1}{3} \pi r^{2} h \\ & =\frac{4}{3} \pi r^{3}-\frac{2}{3} \pi r^{2} r \\ & =\frac{2}{3} \pi r^{3} \\ & =\frac{1}{2} \times V_{\text {sphere }} \end{aligned} \end{aligned}$	Scale 15D (0, 4, 8, 12, 15) Low Partial Credit: - 2 volume formulas given (sphere and cone) - Volume formula given with some relevant manipulation / substitution Mid Partial Credit: - Volume of space in terms of r and h High Partial Credit: - Volume of space in terms of 1 variable Full Credit -1: - Incorrect or no conclusion, otherwise correct
(a) (ii)	$\begin{aligned} & V_{c}=\frac{2}{3} \pi r^{3}=\frac{686}{3} \pi \\ & 2 r^{3}=686 \\ & r^{3}=343 \\ & r=7 \mathrm{~cm} \end{aligned}$	Scale 5B (0, 2, 5) Partial Credit: - 2. $\frac{1}{3} \pi r^{2} h=\frac{686}{3} \pi$ or equivalent, for example, $\frac{1}{3} \pi r^{3}=\frac{686}{6} \pi$ Full Credit -1 - Answer correct but incorrect or no units

Q6	Model Solution - 30 Marks	Marking Notes	
(a)	Step A (Given / Diagram) Given: $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ [similar triangles] [To Prove: $\frac{\|A B\|}{\left\|A^{\prime} B^{\prime}\right\|}=\frac{\|B C\|}{\left\|B^{\prime} C^{\prime}\right\|}=\frac{\|C A\|}{\left\|C^{\prime} A^{\prime}\right\|}$.] Step B (Construction / Diagram): Construction: Mark $B^{\prime \prime}$ on $[A B]$ such that $\left\|A B^{\prime \prime}\right\|=\left\|A^{\prime} B^{\prime}\right\|$. Mark $C^{\prime \prime}$ on $[A C]$ such that $\left\|A C^{\prime \prime}\right\|=\left\|A^{\prime} C^{\prime}\right\|$. [Join $B^{\prime \prime}$ to $C^{\prime \prime}$.] Step C: Proof: $\Delta A B^{\prime \prime} C^{\prime \prime}$ is congruent to $\Delta A^{\prime} B^{\prime} C^{\prime}$ Reason: SAS Step D: $\therefore B^{\prime \prime} C^{\prime \prime} \\| B C$ Reason: corresponding angles, $\left\|\angle A B^{\prime \prime} C^{\prime \prime}\right\|=\|\angle A B C\|$ Step E : $\begin{aligned} & \therefore \frac{\|A B\|}{\left\|A B^{\prime \prime}\right\|}=\frac{\|A C\|}{\left\|A C^{\prime \prime}\right\|} \\ & \therefore \frac{\|A B\|}{\left\|A^{\prime} B^{\prime}\right\|}=\frac{\|A C\|}{\left\|A^{\prime} C^{\prime}\right\|} . \end{aligned}$ Similarly, $\frac{\|A B\|}{\left\|A^{\prime} B^{\prime}\right\|}=\frac{\|B C\|}{\left\|B^{\prime} C^{\prime}\right\|}$. Hence, $\frac{\|A B\|}{\left\|A^{\prime} B^{\prime}\right\|}=\frac{\|B C\|}{\left\|B^{\prime} C^{\prime}\right\|}=\frac{\|C A\|}{\left\|C^{\prime} A^{\prime}\right\|}$.	Scale 20D (0, 5, 10, 15, 20) Consider the proof as requiring five steps, equivalent to those outlined in the model solution. Accept steps without reasons for up to High Partial Credit, but not for Full Credit Accept without last line if To Prove is filled in correctly. Low Partial Credit: - Work of merit, for example, relevant diagram(s) drawn, or effort at 'Given' Mid Partial Credit: - Any 2 steps High Partial Credit: - 4 steps presented	

Q6	Model Solution - 30 Marks	Marking Notes
(b)	s1. $\|\angle H B Q\|=\|\angle H A P\|$ \qquad alternate S2. $\|\angle Q H B\|=\|\angle P H A\|$ \qquad vertically opposite S3. So triangles are similar S4. So $\frac{\|A H\|}{\|H B\|}=\frac{\|A P\|}{\|Q B\|}$ S5. So $\|A H\| \times\|Q B\|=\|A P\| \times\|H B\|$	Scale 10D (0, 3, 5, 8, 10) Note: Step 5 is not considered done unless steps 1 to 4 are all present Low Partial Credit: - 1 relevant step listed or shown on diagram (no justification) - Mentions the relevant justifications Mid Partial Credit: - 3 relevant steps listed or shown on diagram (no justification) High Partial Credit: - All valid steps included but with no justification - 4 steps correct with at least one justification

Q7	Model Solution - 50 Marks	Marking Notes
(a)	$\begin{aligned} & 25 \times 1 \cdot 2=30 \\ & 30+28+4=62[\mathrm{~km}] \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - 1.2 or $\frac{72}{60}$ High Partial Credit: - 30 km coming from $25 \times 1 \cdot 2$
(b)	$4 \cdot 8-1 \cdot 2=3 \cdot 6$ hours Let x be the speed at swimming, so: $\begin{aligned} & T_{\text {run }}+T_{\text {swim }}=\frac{28}{5 \cdot 6 x}+\frac{4}{x}=3 \cdot 6 \\ & \frac{28+4(5 \cdot 6)}{5 \cdot 6 x}=3 \cdot 6 \\ & 50 \cdot 4=20 \cdot 16 x \\ & x=2 \cdot 5[\mathrm{~km} / \mathrm{h}] \end{aligned}$ OR $4 \cdot 8-1 \cdot 2=3 \cdot 6 \text { hours }$ $T_{\text {run }}=\frac{28}{4} \times \frac{T_{\text {swim }}}{5 \cdot 6}, \text { so }$ $\begin{aligned} T_{\text {run }} & +T_{\text {swim }}=\left(\frac{28}{4} \times \frac{T_{\text {swim }}}{5 \cdot 6}\right)+T_{\text {swim }} \\ & =\frac{9}{4} \times T_{\text {swim }}=3.6 \end{aligned}$ So $\quad T_{\text {swim }}=\frac{8}{5}$ i.e. $\quad \operatorname{Speed}_{\text {swim }}=4 \div \frac{8}{5}=2 \cdot 5[\mathrm{~km} / \mathrm{h}]$	Scale 15D (0, 4, 8, 12, 15) Low Partial Credit: - Work of merit, for example: $4 \cdot 8-1 \cdot 2 \text { or } 5 \cdot 6 x \text { or } \frac{28}{4} \text { or } \frac{T_{\text {swim }}}{5 \cdot 6}$ Mid Partial Credit: - $\frac{4}{x}$ or $\frac{28}{5 \cdot 6 x}$ or $\frac{5}{x}$ - $\frac{28}{4} \times \frac{T_{\text {swim }}}{5 \cdot 6}$ High Partial Credit: - An equation in one variable that can be solved to give a relevant time or speed
(c)	$\begin{aligned} & 30^{2}=28^{2}+4^{2}-2(28)(4) \cos C \\ & \cos C=\frac{28^{2}+4^{2}-30^{2}}{2(28)(4)} \\ & \cos C=-\frac{100}{224} \\ & C=116 \cdot 51 \ldots=116 \cdot 5 \quad[1 \text { D.P. }] \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - cosine rule formulated with some substitution Mid Partial Credit: - cosine rule formulated with full substitution High Partial Credit: - $\cos C=\frac{28^{2}+4^{2}-30^{2}}{2(28)(4)}$ or equivalent - $28^{2}+4^{2}-2(28)(4) \cos 116 \cdot 5^{\circ}$ fully evaluated

Q7	Model Solution - 50 Marks	Marking Notes
(d)	$\begin{aligned} & \text { Area }=\frac{1}{2} A B \sin C \\ & \text { Area }=\frac{1}{2}(28)(4) \sin 116 \cdot 5^{\circ} \\ & =50 \cdot 11 \ldots=50 \cdot 1\left[\mathrm{~km}^{2}\right][1 \text { D.P. }] \\ & \text { Or } \\ & \frac{30}{\sin 116 \cdot 5}=\frac{28}{\sin B} \\ & \sin B=0 \cdot 83527 \ldots \\ & B=56 \cdot 33^{\circ} \\ & \text { Area }=\frac{1}{2}(30)(4) \sin 56 \cdot 33 \\ & =50 \cdot 11 \ldots=50 \cdot 1\left[\mathrm{~km}^{2}\right][1 \text { D.P. }] \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Area formula with some substitution High Partial Credit: - Area formula with full substitution
(e)	$\begin{aligned} & \text { Area }=\frac{1}{2} \text { base } \times d \\ & 50 \cdot 1=\frac{1}{2}(30) d \\ & d=\frac{50 \cdot 1}{15}=3 \cdot 34=3 \cdot 3[\mathrm{~km}][1 \text { D.P. }] \end{aligned}$	Scale $10 \mathrm{C}(0,3,7,10)$ Note: divides 116.5° by 2 and continues: award Low Partial Credit at most Low Partial Credit: - Indicates shortest distance with right angle (no credit awarded for this in (d)) - Equation with some substitution High Partial Credit: - Equation with full substitution
(f)	$\begin{gathered} \tan (0.05)=\frac{x}{30} \\ 30 \times \tan (0.05)=x \\ x=0.02617 \ldots \mathrm{~km} \\ =26[\mathrm{~m}][\in \mathbb{N}] \end{gathered}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Relevant work on the diagram, for example, joins T to B and indicates angle of $0 \cdot 05^{\circ}$ - Tan formula with some substitution High Partial Credit: - Tan formula with full substitution

Q8	Model Solution - 50 Marks	Marking Notes
(a) (i)	Top 10\% means 90\% below. $P(z<1 \cdot 28)=0.8997$ $\begin{aligned} & \frac{x-176}{36}=1.28 \\ & \Rightarrow x=222.08 \end{aligned}$ Minimum mark of 223	Scale 10D (0, 3, 5, 8, 10) Note: Accept use of $P(z<1 \cdot 29)$, to give $x=222.44$ Note: Accept answer rounded to 222 instead of 223 Low Partial Credit: - Mean or standard deviation indicated - z-formula with some substitution Mid Partial Credit: - z-score found (1.28 or 1.29) - z-formula fully substituted $\left(\frac{x-176}{36}\right)$ High Partial Credit: - $\frac{x-176}{36}=1.28$
(a) (ii)	$\begin{aligned} & P(165<x<210) \\ & P\left(\frac{165-176}{36}<z<\frac{210-176}{36}\right) \\ & =P(-0.31<z<0.94) \\ & =P(z<0.94)-P(z>-0.31) \\ & P(z<0.94)=0.8264 \\ & P(z<-0.31)=1-P(z<0.31) \\ & \quad=1-0.6217=0.3783 \end{aligned}$ So answer $=0.8264-0.3783=0.4481$ $=44.81 \%$ of 1 st years got the Distinction.	Scale 10D (0, 3, 5, 8, 10) Note: Also accept use of -0.30 instead of -0.31 , and/or use of 0.95 instead of 0.94 . Low Partial Credit: - Mean or standard deviation indicated - z formula with some substitution - -0.305 ... or 0.94 ... Mid Partial Credit: - One relevant probability found directly from tables (0.6217 or $0 \cdot 8264$) High Partial Credit: - 0.3783 found - 0.8264 and 0.6217 found Full Credit -1: - Uses $P(z>-0.35)$ and finishes correctly

Q8	Model Solution - 50 Marks	Marking Notes
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	$T=\frac{19 \cdot 8-21}{\left(\frac{5 \cdot 2}{\sqrt{60}}\right)}=-1 \cdot 787 \ldots$	Scale 5C (0, 2, 3, 5) Note: Accept 1-787 ... Note: $\frac{s}{\sqrt{n}}$ must be used in order to be awarded above Low Partial Credit Low Partial Credit: - Mean or standard deviation indicated - Relevant formula with some substitution High Partial Credit: - Formula fully substituted
(b) (ii)	p-value: $\begin{aligned} p=2[1-P(z & <1 \cdot 79)] \\ & =2(1-0.9633) \\ & =0.0734 \end{aligned}$ Conclusion: There is not enough evidence to say that the claim in the news report is incorrect [as $0.0734>0.05$]	Scale 10D (0, 3, 5, 8, 10) Note: Accept $P(z<1.78)$, so p-value of $2(1-0.9625)=0.075$. Note: Accept conclusion based on z score rather than p-value. Low Partial Credit: - $P(z<1.79)$ - 0.9633 Mid Partial Credit: - $2[1-P(z<1.79)]$ - Work of merit in finding p-value and correct conclusion based on this High Partial Credit: - p-value found but no or incorrect conclusion

Q8	Model Solution - 50 Marks	Marking Notes
$\begin{aligned} & \text { (c) } \\ & \text { (i) } \end{aligned}$	Assuming no replacement: $\begin{gathered} \frac{18}{23} \times \frac{17}{22} \times \frac{16}{21} \times \frac{5}{20} \\ =0 \cdot 11518 \ldots=0 \cdot 1152[4 \text { D.P. }] \end{gathered}$ OR Assuming replacement: $\begin{aligned} &\left(\frac{18}{23}\right)^{3} \times \frac{5}{23} \\ &=0 \cdot 10420 \ldots=0 \cdot 1042[4 \text { D.P. }] \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Note: multiplication between relevant terms is necessary to be awarded above Low Partial Credit Low Partial Credit: - One relevant fraction Mid Partial Credit: - Product of four fractions, two of them correct High Partial Credit: - $\frac{18}{23} \times \frac{17}{22} \times \frac{16}{21} \times \frac{5}{20}$ - $\left(\frac{18}{23}\right)^{3} \times \frac{5}{23}$
(c) (ii)	$\begin{aligned} & \left(\frac{12}{23} \times \frac{6}{22} \times \frac{5}{21}\right) 3!=\frac{360}{1771} \\ & =0 \cdot 20327 \ldots=0.2033 \text { [4 D.P.] } \end{aligned}$ OR $\begin{aligned} & \left(\frac{12}{23} \times \frac{6}{22} \times \frac{5}{21}\right)+\left(\frac{12}{23} \times \frac{5}{22} \times \frac{6}{21}\right)+ \\ & \left(\frac{6}{23} \times \frac{12}{22} \times \frac{5}{21}\right)+\left(\frac{6}{23} \times \frac{5}{22} \times \frac{12}{21}\right)+ \\ & \left(\frac{5}{23} \times \frac{6}{22} \times \frac{12}{21}\right)+\left(\frac{5}{23} \times \frac{12}{22} \times \frac{6}{21}\right) \\ & \quad=0 \cdot 20327 \ldots=0.2033 \text { [4 D.P.] } \end{aligned}$ OR $\frac{\binom{12}{1} \times\binom{ 6}{1} \times\binom{ 5}{1}}{\binom{23}{3}}=0.2033[4 \text { D.P.] }$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - One relevant fraction, for example, $\frac{12}{23}$ or $\frac{6}{22}$ or $\frac{5}{23}$ - Counts / lists different possible arrangements, for example, 3 ! or 6 High Partial Credit: - $\frac{12}{23} \times \frac{6}{22} \times \frac{5}{21}$ or any other relevant triple - Assumes keys are replaced and finishes

Q9	Model Solution - 50 Marks	Marking Notes
(a) (i)	$\begin{aligned} & \|\angle A B C\|=180-20=160^{\circ} \\ & \frac{1450}{\sin 160}=\frac{x}{\sin 8 \cdot 57} \\ & x=\frac{1450 \times \sin 8 \cdot 57}{\sin 160} \\ & x=631.7626 \ldots \\ & \text { Time }=\frac{631.7626 \ldots}{420}=1.504 \ldots \text { hours } \end{aligned}$ $=90 \mathrm{mins}$ or 1.5 hours or 1 hour 30 mins OR $\left.\begin{array}{l} \|A B\|=2 \times 420=840 \mathrm{~km} \\ \|B C\|^{2}=1450^{2}+840^{2} \\ \quad-2(1450)(840) \cos 8 \cdot 57 \\ \|B C\|^{2}=399299 \cdot 05 \ldots \\ \|B C\|=631 \cdot 90 \ldots \end{array}\right] \begin{aligned} & \frac{631 \cdot 90 \ldots}{420}=1 \cdot 50 \ldots \text { hours etc } \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - sine rule or cosine rule stated with some substitution - finds $\|A B\|$ or $\|\angle A B C\|$ Mid Partial Credit: - sine rule or cosine rule with full substitution High Partial Credit: - $\|B C\|$ (that is, x) found
(a) (ii)	$\begin{aligned} & \operatorname{Time}_{[A C]}=\frac{1450}{420}=3 \cdot 4523 \ldots \text { hours } \\ & \text { Total time }=2+1 \cdot 5+3 \cdot 4523 \ldots \\ & \quad=6 \cdot 9523 \ldots \text { hours } \\ & \quad=25028 \cdot 57 \ldots \text { seconds } \end{aligned}$ Max possible flight time $=\frac{100000}{3.8}$ $=26315 \cdot 7 \ldots \text { seconds, }$ which is greater than $25028 \cdot 57$... sec OR Finds $25028 \cdot 57$... seconds Litres required $=3.8 \times 25028.57 \ldots$ $=95108 \cdot 57 \ldots \text { litres, }$ which is less than 100000 litres.	Scale 10D (0, 3, 5, 8, 10) Consider solution as requiring four steps, equivalent to: 1. Finds time in hours to travel [$A C$] 2. Finds total time in hours (3 sides) 3. Converts total time to seconds 4. Converts time (sec) to litres required Low Partial Credit: - One relevant calculation, for example, $\frac{1450}{420}$ or $2+1.5$ or $\frac{100000}{3.8}$ Mid Partial Credit: - Two steps High Partial Credit: - Three steps

Q9	Model Solution - 50 Marks	Marking Notes
$\begin{aligned} & \text { (b) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Range: }[-110 \sqrt{2}, 110 \sqrt{2}] \\ & \text { Period: } \frac{2 \pi}{120 \pi} \text { or } \frac{1}{60} \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Work of merit, for example, some indication of the period of a sine function; some mention of $110 \sqrt{2}$ High Partial Credit - Period or range correct Full Credit -1: - Apply a * for period and range swapped
(b) (ii)		Scale 10C (0, 3, 7, 10) Note: Consider solution as requiring 3 aspects: 1. sine curve of at least one period, including (0,0) 2. range indicated 3. period indicated Low Partial Credit: - Period or range from (b)(i) indicated on axes, but no or incorrect graph - Graph a recognisable portion of a sine curve, or similar High Partial Credit: - Two of the aspects above present on the graph
(b) (iii)	$\begin{aligned} & V(6 \cdot 67)=110 \sqrt{2} \sin 120 \pi 6 \cdot 67 \\ & \quad=147 \cdot 949 \ldots=147 \cdot 95 \text { [Volts] [2 D.P.] } \end{aligned}$	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Formula with some substitution High Partial Credit: - Formula with full substitution Full Credit-1: - Calculator in incorrect mode

Q9	Model Solution - 50 Marks	Marking Notes
(b) (iv)	Accept any value of t satisfying $t=\frac{1+8 n}{480}$ or $t=\frac{3+8 n}{480}$, as long as in the correct form. $V(t)=110 \sqrt{2} \sin 120 \pi t=110$ So $\quad \sin 120 \pi t=\frac{1}{\sqrt{2}}$ So $\quad 120 \pi t=\frac{\pi}{4}$, i.e. $t=\frac{1}{480}$ [seconds] or $\quad 120 \pi t=\frac{3 \pi}{4}=>t=\frac{3}{480}$ [seconds]	Scale 5C (0, 2, 3, 5) Low Partial Credit: - Equation with some substitution High Partial Credit: - Equation with full substitution Full Credit-1: - Calculator in incorrect mode
$\begin{aligned} & \text { (b) } \\ & \text { (v) } \end{aligned}$	$\begin{aligned} V(t) & =110 \sqrt{2} \sin (120 \pi t) \\ V^{\prime}(t) & =120 \pi \times 110 \sqrt{2} \cos (120 \pi t) \\ V^{\prime}(2) & =120 \pi \times 110 \sqrt{2} \cos (120 \pi \times 2) \\ & =58646.0=58646 \mathrm{Volts} / \mathrm{sec}[\in \mathbb{N}] \end{aligned}$	Scale 5C (0, 2, 3, 5) Note: $V^{\prime}(t)$ must be correct in order to be awarded more than Low Partial Credit. Low Partial Credit: - any correct differentiation High Partial Credit: - Expression for $V^{\prime}(t)$ Full Credit-1 - Calculator in incorrect mode - Correct answer with no or incorrect units

Q10	Model Solution - 50 Marks	Marking Notes
(a) (i)	$P\left(2\right.$ from the 1 st 9 are $\left.0^{-}\right) \times P\left(10\right.$ th is $\left.0^{-}\right)$ $\begin{aligned} & =\binom{9}{2}\left(\frac{8}{100}\right)^{2}\left(\frac{92}{100}\right)^{7} \times \frac{8}{100} \\ & =0.01028 \ldots=0.0103 \end{aligned} \text { [4 D.P.] }$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - $\frac{8}{100}$ or $\frac{92}{100}$ or $\binom{9}{2}$ - First line of solution indicated (accept with "and" instead of x) Mid Partial Credit: - $\binom{9}{2}\left(\frac{8}{100}\right)^{2}\left(\frac{92}{100}\right)^{7}$ - $\binom{10}{3}\left(\frac{8}{100}\right)^{3}\left(\frac{92}{100}\right)^{7}$ evaluated High Partial Credit: - $\binom{9}{2}\left(\frac{8}{100}\right)^{2}\left(\frac{92}{100}\right)^{7} \frac{8}{100}$ - $\binom{10}{3}\left(\frac{8}{100}\right)^{3}\left(\frac{92}{100}\right)^{7} \frac{8}{100}$ evaluated
(a) (ii)	$1-P\left(\text { none are } O^{-}\right)$ $\begin{aligned} & =1-\left(\frac{92}{100}\right)^{5} \\ & =0.34091 \ldots=0.3409 \text { [4 D.P.] } \end{aligned}$ OR $P\left(1\right.$ or 2 or 3 or 4 or 5 are $\left.0^{-}\right)$ $\begin{aligned} = & \binom{5}{1}\left(\frac{8}{100}\right)^{1}\left(\frac{92}{100}\right)^{4}+\binom{5}{2}\left(\frac{8}{100}\right)^{2}\left(\frac{92}{100}\right)^{3} \\ & +\binom{5}{3}\left(\frac{8}{100}\right)^{3}\left(\frac{92}{100}\right)^{2}+\binom{5}{4}\left(\frac{8}{100}\right)^{4}\left(\frac{92}{100}\right)^{1} \\ & +\left(\frac{8}{100}\right)^{5} \\ = & 0.34091 \ldots=0.3409 \text { [4 D.P.] } \end{aligned}$	Scale $10 C(0,3,7,10)$ Low Partial Credit: - $\left(\frac{92}{100}\right)^{a}$ where $0<a<5$ - First line of either solution High Partial Credit: - $\left(\frac{92}{100}\right)^{5}$ - Three terms in second solution
(a) (iii)	$\begin{aligned} & 1-0.92^{k}>0.97 \text { so } 0.92^{k}<0.03 \\ & \text { Find where } 0.92^{k}=0.03 \\ & \text { i.e. } \quad k(\ln (0.92))=\ln (0.03) \\ & \text { so } \quad k=\frac{\ln (0.03)}{\ln (0.92)}=42.05 \ldots \\ & \text { so least } k=43 \end{aligned}$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - 0.92^{k} - 0.03 Mid Partial Credit: - $1-0.92^{k}>0.97$ or $=0.97$ - $k(\ln (0.92))$ High Partial Credit: - Equation in k without indices (logs handled correctly)

Q10	Model Solution - 50 Marks	Marking Notes
(b)	Interpretation 1: initial €70 charged regardless $\begin{aligned} & 0 \cdot 8(70)+0 \cdot 2(70+150+80) \\ & =0 \cdot 8(70)+0 \cdot 2(300)=€ 116 \end{aligned}$ Interpretation 2: initial $€ 70$ not charged if not successful $\begin{aligned} & 0 \cdot 8(70)+0 \cdot 2(150+80) \\ & =0 \cdot 8(70)+0 \cdot 2(230)=€ 102 \end{aligned}$	Scale $10 \mathrm{C}(0,3,7,10)$ Low Partial Credit: - A correct calculation, for example, $0 \cdot 8(70)$ or 300 or 230 High Partial Credit: - $0 \cdot 8(70)$ and $0 \cdot 2(300)$ or $0 \cdot 8(70)$ and $0 \cdot 2(230)$
(c)	Average pay-out per customer: $\begin{aligned} & 120000(0 \cdot 0001)+40000(0 \cdot 002) \\ & =€ 92 \end{aligned}$ Target profit per customer: $\frac{900000}{18000}=€ 50$ Required premium: $50+92=€ 142$ OR Average pay-out per customer: $\begin{aligned} & 120000(0 \cdot 0001)+40000(0 \cdot 002) \\ & =€ 92 \end{aligned}$ Total expected payout: $€ 92 \times 18000=€ 1656000$ Total revenue required: $€ 1656000+€ 900000=€ 2556000$ Required premium: $€ 2556000 \div 18000=€ 142$	Scale 10D (0, 3, 5, 8, 10) Low Partial Credit: - One relevant calculation, for example, $120000(0 \cdot 0001) \text { or } \frac{900000}{18000}$ Mid Partial Credit: - Finds €92 (average payout per person) High Partial Credit: - Finds $€ 2556000$ (total revenue) - Finds €92 and €50

Marcanna Breise as ucht freagairt trí Ghaeilge

Léiríonn an tábla thíos an méid marcanna breise ba chóir a bhronnadh ar iarrthóirí a ghnóthaíonn níos mó ná 75% d'iomlán na marcanna.
N.B. Ba chóir marcanna de réir an ghnáthráta a bhronnadh ar iarrthóirí nach ngnóthaíonn níos mó ná 75% d'iomlán na marcanna don scrúdú. Ba chóir freisin an marc bónais sin a shlánú síos.

Tábla 220 @ 5\%
Bain úsáid as an tábla seo i gcás na n-ábhar a bhfuil 220 marc san iomlán ag gabháil leo agus inarb é 5% gnáthráta an bhónais.

Bain úsáid as an ngnáthráta i gcás 165 marc agus faoina bhun sin. Os cionn an mharc sin, féach an tábla thíos.

Bunmharc	Marc Bónais
166	8
$167-173$	7
$174-180$	6
$181-186$	5
$187-193$	4

Bunmharc	Marc Bónais
$194-200$	3
$201-206$	2
$207-213$	1
$214-220$	0

