eMaths.ie
  • Home
    • Contact
    • Revision Notes
    • 150 HL Revision Questions
    • Exam Layout
    • T&T Solutions
    • Calculators
    • Geogebra
    • Formulae and Tables Book
    • Applied Maths
    • Projectmaths.ie
  • HL Paper 1
    • Algebra 1
    • Algebra 2
    • Algebra 3
    • Financial Maths
    • Algebra Overview
    • Proof by Induction
    • Functions
    • Graphing Polynomials
    • Differentiation
    • Integration
    • Sequences & Series
    • Arithmetic and Money
    • Number Systems
    • Complex Numbers
    • Paper 1 - Must Learn
  • HL Paper 2
    • Probability
    • Statistics
    • Geometry
    • Area and Volume
    • The Line & Circle
    • Trigonometry Overview
    • Trigonometry 1
    • Trigonometry 2
    • Paper 2 - Must Learn
  • HL Exam Papers
    • Printable Exam Questions
    • Exam Question Solutions & Marks
    • Molloy Maths LCHL Exam Videos
    • Revision Questions
  • OL Topics
    • OL Algebra
    • OL Complex Numbers
    • OL Calculus
    • OL Normal Curve and Hypothesis Testing
    • OL Statistics

Algebra Overview - 21 Questions

Algebra Questions

1. Binomial Theorem

Expand fully: \((3x-2y)^5\).

\[ (3x-2y)^5=\sum_{k=0}^{5}\binom{5}{k}(3x)^{5-k}(-2y)^k =243x^5-810x^4y+1080x^3y^2-720x^2y^3+240xy^4-32y^5. \]

2. Fractions

Write as a single fraction in simplest form: \[ \frac{x-1-\tfrac{6}{x}}{\,x-\tfrac{4}{x}\,}. \]

Multiply top and bottom by \(x\): \[ \frac{x^2-x-6}{x^2-4}=\frac{(x-3)(x+2)}{(x-2)(x+2)}=\frac{x-3}{x-2}, \quad x\neq 0,\pm2. \]

3. Surds

If \(x=\sqrt a+\tfrac1{\sqrt a}\) and \(y=\sqrt a-\tfrac1{\sqrt a}\) with \(a>0\), find \(x^2-y^2\).

\[ x^2-y^2=(x-y)(x+y)=\Big(\tfrac{2}{\sqrt a}\Big)\big(2\sqrt a\big)=4. \]

4. Making and manipulating formulae

Using the constant-acceleration formula \( s = ut + \tfrac{1}{2} a t^2 \) (with \(t>0\)), rearrange to express \(a\) in terms of \(s, u, t\).

\[ s-ut=\tfrac12 a t^2 \;\Rightarrow\; a=\frac{2(s-ut)}{t^2},\qquad t\neq 0. \]

5. Linear simultaneous equations (two variables)

\(\;3x+2y=9,\quad 2x-y=-1.\)

From \(2x-y=-1\Rightarrow y=2x+1\). Substitute: \(3x+2(2x+1)=9\Rightarrow7x=7\Rightarrow x=1\), \(y=3\).

6. Linear simultaneous equations (three variables)

Let \(f,s,d\) be ages of father, son, daughter. Given \(f=3(s+d)\), \(f+s=9d\), \(f+s+d=40\). Find \(f,s,d\).

From \(f+s=9d\) and \(f+s+d=40\Rightarrow10d=40\Rightarrow d=4\). Then \(f+s=36\) and \(f=3(s+4)=3s+12\Rightarrow 4s+12=36\Rightarrow s=6,\; f=30.\)

7. Solving quadratic equations

Solve \(28=x(31+5x)\) by (i) factors, (ii) completing the square, (iii) quadratic formula.

Rearrange \(5x^2+31x-28=0=(5x-4)(x+7)\Rightarrow x=\frac45,-7\). Completing the square and quadratic formula give the same roots.

8. Quadratic graphs

For \(f(x)=2x^2-6x+11\), find the turning point and solve \(f(x)=10\) from your graph.

\[ f(x)=2\big(x^2-3x\big)+11 =2\Big((x-\tfrac32)^2-\tfrac94\Big)+11 =2(x-\tfrac32)^2+ \tfrac{13}{2}. \] Turning point \(\big(\tfrac32,\tfrac{13}{2}\big)\). \(f(x)=10\Rightarrow 2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt7}{2}.\)

9. Nature of quadratic roots

Show roots of \(px^2-(p+q)x+q=0\) are real \(\forall\,p,q\in\mathbb R\) and express them.

\(\Delta=(p+q)^2-4pq=(p-q)^2\ge0\). Roots: \(\displaystyle x=\frac{(p+q)\pm|p-q|}{2p}\) for \(p\neq0\).

10. Linear / non-linear simultaneous equations

\(\;3x-y=1,\quad x^2+4xy=9.\)

\(y=3x-1\Rightarrow x^2+4x(3x-1)=9\Rightarrow 13x^2-4x-9=0\). \(x=\dfrac{4\pm22}{26}\Rightarrow x=1\) or \(-\tfrac{9}{13}\). \(y=2\) or \(-\tfrac{40}{13}\).

11. Rational equations

\(\;\dfrac{1}{x-2}+\dfrac{4}{x+1}=2.\)

\(\dfrac{5x-7}{(x-2)(x+1)}=2\Rightarrow 2x^2-7x+3=0=(2x-1)(x-3)\). \(x=\tfrac12,\,3\) (exclude \(x\neq2,-1\)).

12. Irrational equations

\(\;\sqrt{2x+1}-\sqrt{x-3}=2,\; x\ge3.\)

Square twice: \(x=4\sqrt{x-3}\Rightarrow x^2-16x+48=0\Rightarrow x=4,12\). Both satisfy the original equation.

13. Identities

If \((x+a)^2-(x+b)^2=12x+12\;\forall x\), find \(a,b\).

Difference of squares: \((a-b)(2x+a+b)=12x+12\). \(2(a-b)=12\Rightarrow a-b=6\); \( (a-b)(a+b)=12\Rightarrow a+b=2\). Hence \(a=4,\; b=-2\).

14. Factor Theorem (cubics)

\(f(x)=x^3+ax^2-7x+b\) with factors \(x-1\) and \(x-2\).

\(f(1)=0\Rightarrow a+b-6=0\). \(f(2)=0\Rightarrow 4a-6+b=0\Rightarrow a=0,\;b=6\). \(f(x)=x^3-7x+6=(x-1)(x-2)(x+3)\).

15. Quadratic factor of a cubic

If \(x^2-px+1\) divides \(ax^3+bx+c\;(a\ne0)\), show \(c^2=a(a-b)\).

Write \(ax^3+bx+c=(x^2-px+1)(Ax+B)\). Compare: \(A=a,\;B=ap,\;b=a- ap^2\), \(c=B=ap\). Thus \(c^2=a^2p^2=a\big(a-ap^2\big)=a(a-b).\)

16. Graphing polynomial curves

The graph of \(y=f(x)\) (degree \(4\)) is shown. Given that the curve passes through \((0,-54)\) and has \(x\)-intercepts at \(-3\), \(1\), and \(3\) (with \(x=3\) a double root), find an expression for \(f(x)\).

Graph of polynomial curve
From the intercepts and multiplicity, write \[ f(x)=k(x+3)(x-1)(x-3)^2. \] Use the point \((0,-54)\): \[ f(0)=-54=k(3)(-1)(9)=-27k \;\Rightarrow\; k=2. \] Hence a correct expression is \[ \boxed{\,f(x)=2(x+3)(x-1)(x-3)^2\,}. \] Expanded form (optional): \[ f(x)=2x^4-8x^3-12x^2+72x-54. \] Check: \(f(0)=-54\) and the roots are \(-3,1,3,3\) as required.

17. Modulus inequalities

Solve \(|2x+5|<3\).

\(-3<2x+5<3\Rightarrow -8<2x<-2\Rightarrow -4<x<-1.\)

18. Abstract inequalities

Prove \(x^2+y^2\ge\frac12(x+y)^2\) for \(x,y\in\mathbb R\).

Since \((x-y)^2\ge0\Rightarrow x^2+y^2\ge2xy\). Hence \(x^2+y^2\ge \tfrac12(x^2+2xy+y^2)=\tfrac12(x+y)^2.\)

19. Rational inequalities

Solve \(\dfrac{5-x}{x-2}<1,\;x\neq2.\)

\(\dfrac{7-2x}{x-2}<0\). Critical points \(x=2,\;\tfrac{7}{2}\). Sign chart gives \(2<x<\tfrac{7}{2}\).

20. Logs and log equations

\(\;\log_5 x = 1 + \log_2\!\big(\frac{3}{2x-1}\big),\;x>\tfrac12.\)

Write \(1=\log_2 2\Rightarrow \log_5 x=\log_2\!\big(\tfrac{6}{2x-1}\big)\). Change of base: \(\dfrac{\ln x}{\ln 5}=\dfrac{\ln\!\big(\tfrac{6}{2x-1}\big)}{\ln 2}\). Solve numerically (no simple closed form): \(x\approx 2.51619\) (3 s.f.: \(2.52\)).

21. Unknown in the index

\(\;2^{2x+1}-17\cdot 2^x+8=0.\)

Let \(u=2^x>0\): \(2u^2-17u+8=0\Rightarrow u=8\) or \(\tfrac12\). Hence \(x=3\) or \(-1\).

Revision Notes
Algebra Exam Questions

For a reasonably comprehensive revision of Algebra this page contains 3 Printable Worksheets with solutions.
Algebra Revision Worksheet Questions
Algebra Revision Worksheet Solutions

22 Revision Questions

22 Algebra Revision Questions
Picture
Picture
Picture
Picture
Solution 1
Picture
Solution 2
Picture
Solution 3
Picture
Solution 4
Picture
Solution 5
Picture
Solution 6
Picture
Solution 7 i
Solution 7 ii
Solution 7 iii
Picture
Solution 8
Picture
Picture
Solution 9
Picture
Solution 10
Picture
Solution 11
Picture
Solution 12
Picture
Solution 13
Picture
Solution 14
Picture
Solution 15
Picture
Solution 16
Picture
Solution 17
Picture
Solution 18
Picture
Solution 19
Picture
Solution  20
Picture
Solution  21
Picture
Solution  22

4 Revision Questions

Picture
Induction Revision Questions
Picture
Picture
4.  Prove de Moivre's Theorem using induction
Solution 1
Solution 2
Solution 3
Solution 4
Powered by Create your own unique website with customizable templates.